Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Решить системы уравнений: \( \left\{\begin{matrix} 8^{\log _{9}\left ( x-4y \right )}=1, & & \\ 4^{x-2y}-7*2^{x-2y}=8. & & \end{matrix}\right. \)

Решение №15873: ОДЗ: \( x-4y> 0 \) Из условия \( \left\{\begin{matrix} 8^{\log _{9}\left ( x-4y \right )}=8^{\circ} & & \\ \left ( 2^{x-2y} \right )-7*2^{x-2y}-8=0 . & & \end{matrix}\right. \) Из первого уравнения системы имеем \( \log _{9}\left ( x-4y \right )=0 \), откуда \( x-4y=1 \) Решая второе уравнение системы как квадратное относительно \( 2^{x-2y} \), получаем \( 2^{x-2y}=-1,\varnothing ; 2^{x-2y}=2^{3} \), откуда \( x-2y=3 \) Исходная система принимает вид \( \left\{\begin{matrix} x-4y=1, & & \\ x-2y=3 & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} x=5, & & \\ y=1. & & \end{matrix}\right. \)

Ответ: \( \left ( 5; 1 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} x^{2y^{2}-1}=5, & & \\ x^{y^{2}+2}=125. & & \end{matrix}\right. \)

Решение №15874: ОДЗ: \( 0< x\neq 1 \) Логарифмируя первое и второе уравнения ситемы по основанию получаем \( \left\{\begin{matrix} \log _{5}x^{2y^{2}-1}=\log _{5}5, & & \\ \log _{5}x^{2y^{2}+2}=\log _{5}125, & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \left ( 2y^{2}-1 \right \)log _{5}x=1 & & \\ \left ( y^{2}+2 \right \)log _{5}x=3 & & \end{matrix}\right. \Rightarrow \log _{5}x=\frac{1}{2y^{2}-1} \) Из второго уравнения системы имеем \( \frac{y^{2}+2}{2y^{2}-1}=3. y^{2}=1 \), откуда \( y=\pm 1 \) Тогда \( \log _{5}x=1 \), т.е. \( x=5\)

Ответ: \( \left ( 5; 1 \right ), \left ( 5; -1 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} \log _{y}x+\log _{x}y=2 & & \\ x^{2}-y=20 & & \end{matrix}\right. \)

Решение №15875: ОДЗ: \( \left\{\begin{matrix} 0< x\neq 1 & & \\ 0< y\neq 1 & & \end{matrix}\right. \) Из первого уравнения имеем: \( \log _{y}x+\frac{1}{\log _{y}x}-2=0, \log _{y}^{2}x-2\log _{y}x+1=0, \left ( \log _{y}x-1 \right )^{2}=0 \), откуда \( \log _{y}x=1, x=y \) Из второго уравнения системы имеем \( y^{2}-y-20=0 \), откуда \( y_{1}=-4, y_{2}=5; y_{1}=-4 \) не подходит по ОДЗ. Тогда \( x=y=5 \)

Ответ: \( \left ( 5; 5 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} \lg \left ( x^{2}+y^{2} \right )=2 & & \\ \log _{2}x-4\log _{2}3-\log _{2}y & & \end{matrix}\right. \)

Решение №15876: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ y> 0. & & \end{matrix}\right. \) Из первого уравнения системы уравнений имеем \( x^{2}+y^{2}=100 \) Из второго уравнения системы найдем \( \log _{2}\frac{x}{16}=\log _{2}\frac{3}{y} \), откуда \( \frac{x}{16}=\frac{3}{y}, x=\frac{48}{y} \) Далее получаем \( \left ( \frac{48}{y} \right )^{2}+y^{2}-100=0, y^{4}-100y^{2}+2304=0 \), откуда \( y_{1,2}=\pm 6, y_{3,4}=\pm 8; y_{2}=-6 , y_{4}=-8 \) не подходят по ОДЗ. Тогда \( x_{1}=8, x_{2}=6 \)

Ответ: \( \left ( 8; 6 \right ), \left ( 6; 8 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} \left ( x+y \right )*2^{y-2x}=6.25, & & \\ \left ( x+y \right )^{\frac{1}{2x-y}}=5. & & \end{matrix}\right. \)

Решение №15877: ОДЗ: \( \left\{\begin{matrix} 0< x+y\neq 1, & & \\ 2x-y\neq 0. & & \end{matrix}\right. \) Логарифмируя оба уравнения по основанию 10, имеем \( \left\{\begin{matrix} \lg \left ( x+y \right )*2^{y-2x}=\lg \left ( \frac{5}{2} \right )^{2} & & \\ \lg \left ( x+y \right )^{\frac{1}{2x-y}}=\lg 5 & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \lg \left ( x+y \right )+\left ( y-2x \right \)lg 2=2\left ( \lg 5-\lg 2 \right ), & & \\ \frac{\lg \left ( x+y \right )}{2x-y}=\lg 5 & & \end{matrix}\right. \) Из второго уравнения системы получаем \( \lg \left ( x+y \right )=\left ( 2x-y \right \)lg 5 \), тогда\left ( 2x-y \right \)lg 5+\left ( y-2x \right \)lg 2=2\left ( \lg 5-\lg 2 \right ), \left ( 2x-y \right \)left ( \lg 5-\lg 2 \right )=2\left ( \lg 5-\lg 2 \right ), 2x-y=2 \) Исходная система принимает вид \( \left\{\begin{matrix} 2x-y=2, & & \\ \lg \left ( x+y \right )=2\lg 5, & & \end{matrix}\right. \left\{\begin{matrix} 2x-y=2, & & \\ x+y=25 & & \end{matrix}\right.\), откуда \( \left\{\begin{matrix} x=9, & & \\ y=16. & & \end{matrix}\right.\)

Ответ: \( \left ( 9; 16 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} 10^{1+\lg \left ( x+y \right )}=50 & & \\ \lg \left ( x-y \right )+\lg \left ( x+y \right )=2-\lg 5 & & \end{matrix}\right. \)

Решение №15878: ОДЗ: \( \left\{\begin{matrix} x-y> 0, & & \\ x+y> 0. & & \end{matrix}\right. \) Имеем: \( \left\{\begin{matrix} 10^{1+\lg \left ( x+y \right )}=\lg 50, & & \\ \lg \left ( x^{2}-y^{2} \right )=\lg 20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1+\lg \left ( x+y \right )=\lg 50, & & \\ x^{2}-y^{2}=20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x+y=5, & & \\ \left ( x-y \right \)left ( x+y \right )=20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x+y=5, & & \\ x-y=4, & & \end{matrix}\right. \), откуда \( x=\frac{9}{2}, y=\frac{1}{2} \)

Ответ: \( \left (\frac{9}{2}; \frac{1}{2} \right ) )\

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Диаметр окружности пересекает хорду под углом \(45^{\circ}\) и делит её на отрезки, равные 5 и 11. Найдите расстояние от центра окружности до хорды.

Решение №15879: Проведите из центра \(О\) окружности перпендикуляр \(ОМ\) к хорде. Тогда точка \(М\) — середина хорды, а расстояние от центра окружности до хорды равно \(ОМ\). Точка \(С\) пересечения хорды и диаметра делит хорду на отрезки длиной 5 и 11, поэтому \(СМ = З\) (рис. ниже). Треугольник \(СОМ\) равнобедренный прямоугольный, поэтому \(ОМ = СМ = З\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Хорда пересекает диаметр окружности под углом \(30^{\circ}\) и делит его на отрезки, равные 5 и 13. Найдите расстояние от центра окружности до хорды.

Решение №15880: Проведите из центра \(О\) окружности перпендикуляр \(ОМ\) к хорде. Тогда точка \(М\) — середина хорды, а расстояние от центра окружности до хорды равно \(ОМ\). Точка \(С\) пересечения хорды и диаметра делит диаметр на отрезки длиной 5 и 13, поэтому \(СО = 4\) (рис. ниже). Катет \(ОМ\) прямоугольного треугольника \(СОМ\) лежит против угла \(30^{\circ}\) , поэтому \(ОМ = \frac{1}{2} CO=2\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Докажите, что хорды окружности, удалённые от её центра на равные расстояния, равны.

Решение №15881: Пусть \(М\) и \(N\) — середины хорд \(АВ\) и \(CD\), \(О\) — центр окружности, \(ОМ = ОN\) . Тогда прямоугольные треугольники \(АОМ\) и \(CON\) равны по гипотенузе и катету (рис. ниже).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Через точку \(Р\) проведены две прямые, на которых окружность высекает равные хорды \(АВ\) и \(CD\) (точка \(А\) лежит между \(Р\) и \(В\), точка \(С\) лежит между \(Р\) и \(D\)). Докажите, что \(РА = РС\).

Решение №15882: Пусть \(М\) и \(N\) — середины хорд \(АВ\) и \(CD\), \(О\) — центр окружности. Тогда прямоугольные треугольники \(АОМ\) и \(CON\) равны по гипотенузе и катету (рис. 131), поэтому прямоугольные треугольники \(РОМ\) и \(PON\) тоже равны по гипотенузе и катету.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Две пересекающиеся хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

Решение №15883: Центр окружности, точка пересечения хорд и середины хорд являются вершинами прямоугольника.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Две перпендикулярные хорды окружности пересекаются, и каждая из них делится точкой пересечения на два отрезка длиной З и 7. Найдите расстояние от центра окружности до каждой из этих хорд.

Решение №15884: Расстояние от середины хорды до точки пересечения хорд равно 2, поэтому центр окружности, точка пересечения хорд и середины хорд являются вершинами квадрата, сторона которого равна 2.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.

Решение №15885: Пусть стороны \(АВ\) и \(ВС\) треугольника \(АВС\) равны и точка \(М\) — середина основания \(АС\). Тогда \(\angle AMB = 90^{\circ}\) , поэтому точка \(М\) лежит на окружности с диаметром \(АВ\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что этот треугольник равнобедренный.

Решение №15886: Пусть окружность с диаметром \(АВ\) проходит через середину \(М\) стороны \(АС\). Тогда \(ВМ\) — высота треугольника и его медиана. Треугольник, в котором медиана является высотой, равнобедренный.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах треугольника равные отрезки. Докажите, что этот треугольник равнобедренный.

Решение №15887: Пусть окружность с диаметром \(АС\) пересекает стороны \(АВ\) и \(ВС\) в точках \(D\) и \(Е\), причём \(АD = СЕ\). Тогда прямоугольные треугольники \(АСЕ\) и \(CAD\) равны по гипотенузе и катету, поэтому \(\angle A = \angle C\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Окружность, построенная на биссектрисе треугольника \(АВС\) как на диаметре, пересекает стороны \(АВ\) и \(АС\) в точках \(М\) и \(N\), отличных от точки \(А\). Докажите, что \(АМ = АN\) .

Решение №15888: Прямоугольные треугольники \(ADM\) и \(AND\) равны по гипотенузе и острому углу.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Докажите, что любая хорда окружности не превосходит её диаметра.

Решение №15889: Все диаметры окружности равны, поэтому хорду \(АВ\) можно сравнить с диаметром \(АС\). Если хорда \(АВ\) отлична от диаметра, то диаметр \(АС\) — гипотенуза прямоугольного треугольника, а хорда \(АВ\) — его катет.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

В прямоугольном треугольнике \(АВС\) катет \(АС\) равен 6 и \(\angle A=30^{\circ}\). Окружность с диаметром \(АС\) пересекает гипотенузу \(АВ\) в точке \(К\). Найдите \(СК\).

Решение №15890: Отрезок \(СК\) перпендикулярен гипотенузе \(АВ\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите острые углы треугольника.

Решение №15891: Пусть окружность, построенная на катете \(АС\) прямоугольного треугольника \(АВС\) как на диаметре, проходит через середину \(М\) гипотенузы \(АВ\). Тогда угол \(АМС\) прямой, поэтому медиана \(СМ\) совпадает с высотой. Следовательно, треугольник \(АВС\) равнобедренный .

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Окружности, построенные на сторонах \(АВ\) и \(АС\) треугольника \(АВС\) как на диаметрах, пересекаются в точке \(D\), отличной от точки \(А\). Докажите, что точка \(D\) лежит на прямой \(ВС\).

Решение №15892: Точка \(D\) основание высоты, проведённой из вершины \(А\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

В треугольнике \(АВС\) проведены высоты \(АА_{1}\) и \(ВВ_{1}\) . Докажите, что середина стороны \(АВ\) равноудалена от точек \(А_{1}\) и \(В_{1}\)

Решение №15893: Точки \(А_{1}\) и \(В_{1}\) лежат на окружности, диаметром которой служит отрезок \(АВ\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Докажите, что прямоугольный треугольник с гипотенузой с можно полностью накрыть тремя кругами диаметром

Решение №15894: Проведите из середины гипотенузы перпендикуляры к катетам (рис. ниже). Они разбивают прямоугольный треугольник на прямоугольник и два равных прямоугольных треугольника. Каждую из этих трёх фигур можно накрыть кругом диаметром \(\frac{c}{2}\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

На какое число частей могут разбивать круг две хорды?

Решение №15895: Непересекающиеся хорды разбивают круг на З части, а пересекающиеся на 4.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

На какое число частей могут разбивать круг три хорды?

Решение №15896: Если хорды попарно не пересекаются, то они разбивают круг на 4 части. Если две хорды пересекаются, а третья их не пересекает, то они разбивают круг на 5 частей. Если две хорды пересекаются, а третья либо пересекает только одну из них, либо проходит через их точку пересечения, то они разбивают круг на 6 частей. Если хорды попарно пересекаются и все точки пересечения различны в трёх разных точках, то они разбивают круг на 7 частей.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

На какое наибольшее и какое наименьшее число частей могут разбивать круг четыре хорды?

Решение №15897: Число частей наибольшее в том случае, когда хорды попарно пересекаются и все точки пересечения различны, а наименьшее в том случае, когда хорды попарно не пересекаются.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

На какое наибольшее число областей могут разбивать плоскость три окружности?

Решение №15898: Число частей наибольшее, когда окружности попарно пересекаются и все точки пересечения различны

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

На какое наибольшее число областей могут разбивать плоскость четыре окружности?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите следующие свойства окружности: диаметр, перпендикулярный хорде, делит ее пополам;

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите следующие свойства окружности: диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде;

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите следующие свойства окружности: окружность симметрична относительно каждого своего диаметра;

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите следующие свойства окружности: дуги окружности, заключенные между параллельными хордами, равны;

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите следующие свойства окружности: хорды, удаленные от центра окружности на равные расстояния, равны.

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через точку окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

Пока решения данной задачи,увы,нет...

Ответ: 60

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через точку \(A\) окружности с центром \(O\) проведены диаметр \(AB\) и хорда \(AC\). Докажите, что угол \(BAC\) вдвое меньше угла \(BOC\).

Решение №15906: Примените теорему о внешнем угле треугольника

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Угол между радиусами \(OA\) и \(OB\) окружности равен \(60^{o}\). Найдите хорду \(AB\), если радиус окружности равен \(R\).

Пока решения данной задачи,увы,нет...

Ответ: \(R\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите угол между радиусами \(OA\) и \(OB\), если расстояние от центра \(O\) окружности до хорды \(AB\): вдвое меньше \(AB\);

Пока решения данной задачи,увы,нет...

Ответ: \(90^{o}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите угол между радиусами \(OA\) и \(OB\), если расстояние от центра \(O\) окружности до хорды \(AB\): вдвое меньше \(OA\).

Пока решения данной задачи,увы,нет...

Ответ: \(120^{o}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Дана окружность с центром \(O\). На продолжении хорды \(AB\) за точку \(B\) отложен отрезок \(BC\), равный радиусу. Через точки \(C\) и \(O\) проведена секущая \(CD\) (\(D\) — точка пересечения с окружностью, лежащая вне отрезка \(CO\)). Докажите,что \(∠AOD = 3∠ACD\).

Решение №15910: Обозначим \(∠ACD = \alpha\) (рис. 140). Тогда \(∠BOC = ∠BCO = \alpha\), \(∠OAB = ∠ABO = ∠BCO + ∠BOC = 2\alpha\), \(∠AOD = ∠OAC + ∠ACO = 2\alpha + \alpha = 3\alpha\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключенные между окружностями, равны.

Решение №15911: Опустите перпендикуляр из центра окружности на данную прямую.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Равные хорды окружности с центром \(O\) пересекаются в точке \(M\). Докажите, что \(MO\) — биссектриса угла между ними.

Решение №15912: Опустите перпендикуляры из центра окружности на данные хорды.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Прямая, проходящая через общую точку \(A\) двух окружностей, пересекает вторично эти окружности в точках \(B\) и \(C\) соответственно. Расстояние между проекциями центров окружностей на эту прямую равно \(12\). Найдите \(BC\), если известно, что точка \(A\) лежит на отрезке \(BC\).

Решение №15913: Диаметр, перпендикулярный хорде, делит ее пополам.

Ответ: 24

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

Решение №15914: Пусть \(O\) — центр окружности, \(AB и CD\) — данные хорды, \(M и N\) — их середины, \(K\) — точка пересечения хорд (рис. 141). Докажите равенство прямоугольных треугольников \(KOM\) и \(NMO\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В круге даны две взаимно перпендикулярные хорды. Каждая из них делится другой хордой на отрезки, равные \(a\) и \(b\) \((a < b)\). Найдите расстояние от центра окружности до каждой хорды.

Решение №15915: Пусть \(N\) и \(M\) — основания перпендикуляров, опущенных из центр \(O\) окружности на данные хорды, \(A\) — точка пересечения хорд (рис. 142). Тогда \(N\) и \(M\) — середины хорд, а все стороны четырехугольника \(OMAN\) равны (это квадрат). Следовательно, \(ON = AM =\frac{1}{2}(a + b) − a =\frac{1}{2}(b − a)\)

Ответ: \(\frac{1}{2}(b − a)\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Рассматриваются все хорды окружности, имеющие заданную длину. Найдите геометрическое место их середин.

Решение №15916: Окружность, концентрическая данной

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что центр окружности, описанной около прямоугольного треугольника, — середина гипотенузы.

Решение №15917: Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите геометрическое место точек \(M\), из которых данный отрезок \(AB\) виден под прямым углом (т. е. \(∠AMB = 90^{o}\)

Пока решения данной задачи,увы,нет...

Ответ: Окружность с диаметром \(AB\) без точек \(A\) и \(B\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

\(BM\) и \(CN\) — высоты треугольника \(ABC\). Докажите, что точки \(B\), \(N\), \(M\) и \(C\) лежат на одной окружности.

Решение №15919: Отрезок \(BC\) виден из точек \(M\) и \(N\) под прямым углом.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через точку \(A\), лежащую на окружности, проведены диаметр \(AB\) и хорда \(AC\), причем \(AC = 8\) и \(∠BAC = 30^{o}\) . Найдите хорду \(CM\), перпендикулярную \(AB\).

Пока решения данной задачи,увы,нет...

Ответ: 8

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через концы диаметра окружности проведены две хорды, пересекающиеся на окружности и равные \(12\) и \(16\). Найдите расстояния от центра окружности до этих хорд.

Пока решения данной задачи,увы,нет...

Ответ: \(8\) и \(6\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Известно, что \(AB\) — диаметр окружности, а хорды \(AC\) и \(BD\) параллельны. Докажите, что \(AC = BD\), а \(CD\) — также диаметр.

Решение №15922: Так как \(AC || BD\), то \(∠BAC = ∠ABD\), поэтому прямоугольные треугольники \(ABC\) и \(BAD\) равны по гипотенузе и острому углу (рис. 143). Значит, \(AC = BD\). Кроме того, значит, \(CD\) — диаметр \(∠CAD = ∠CAB + ∠BAD = ∠CAB + ∠ABC = 90^{o}\) ,

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Биссектрисы внутреннего и внешнего угла при вершине \(A\) треугольника \(ABC\) пересекают прямую \(BC\) в точках \(P\) и \(Q\). Докажите, что окружность, построенная на отрезке \(PQ\) как на диаметре, проходит через точку \(A\).

Решение №15923: Биссектрисы смежных углов взаимно перпендикулярны.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На катете \(AC\) прямоугольного треугольника \(ABC\) как на диаметре построена окружность, пересекающая гипотенузу \(AB\) в точке \(K\). Найдите \(CK\), если \(AC = 2\) и \(∠A = 30^{o}\) .

Пока решения данной задачи,увы,нет...

Ответ: 1

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что окружность, построенная на стороне равностороннего треугольника как на диаметре, проходит через середины двух других сторон треугольника.

Решение №15925: Высота равнобедренного треугольника, проведенная к основанию, является также медианой

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.

Решение №15927: Если высота треугольника является также медианой, то треугольник равнобедренный.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В окружности проведены хорды \(AB\) и \(CD\). Расстояние между равными параллельными хордами \(AB\) и \(CD\) равно радиусу окружности. Найдите угол между пересекающимися прямыми \(AC\) и \(BD\).

Пока решения данной задачи,увы,нет...

Ответ: 60

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Продолжения равных хорд \(AB\) и \(CD\) окружности соответственно за точки \(B\) и \(C\) пересекаются в точке \(P\). Докажите, что треугольники \(APD\)и \(BPC\) равнобедренные.

Решение №15929: Перпендикуляры \(OM\) и \(ON\) (рис. 144), опущенные из центра \(O\) окружности на равные хорды \(AB\) и \(CD\) соответственно, равны и делят эти хорды пополам, поэтому прямоугольные треугольники \(POM\) и \(PON\) равны по катету и гипотенузе, значит, \(PM = PN\). Следовательно, \(PA = PM +MA = PM + \frac{1}{2}AB = PN + \frac{1}{2}CD = PN +ND = PD\)и \(PB = PA − AB = PD − CD = PC\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Продолжения хорд \(AB\) и \(CD\) окружности с диаметром \(AD\) пересекаются под углом \(25^{o}\). Найдите острый угол между хордами \(AC\) и \(BD\).

Пока решения данной задачи,увы,нет...

Ответ: 25

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность, построенная на биссектрисе \(AD\) треугольника \(ABC\) как на диаметре, пересекает стороны \(AB\)и \(AC\) соответственно в точках \(M\)и \(N\), отличных от \(A\). Докажите, что \(AM = AN\)

Решение №15931: Прямоугольные треугольники \(AMD\) и \(AND\) равны

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите внутри треугольника \(ABC\)такую точку \(P\), чтобы общие хорды каждой пары окружностей, построенных на отрезках \(PA\), \(PB\) и \(PC\) как на диаметрах, были равны.

Пока решения данной задачи,увы,нет...

Ответ: Точка пересечения биссектрис треугольника \(ABC\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Центр окружности, описанной около треугольника, симметричен центру окружности, вписанной в этот треугольник, относительно одной из сторон. Найдите углы треугольника.

Решение №15933: Пусть \(O\) и \(Q\) — соответственно центры описанной и вписанной окружностей треугольника \(ABC\) (рис. 145), причем \(O\) и \(Q\) симметричны относительно прямой \(BC\). Обозначим \(∠OBC = ∠QBC = \alpha\). Поскольку треугольник \(BOC\) равнобедренный, то \(∠QCB = ∠OCB = ∠OBC = \alpha\), а так как \(BQ\) — биссектриса угла \(ABC\), то \(∠ABC = 2\alpha\). Аналогично, \(∠ACB = 2\alpha\). Значит, треугольник \(ABC\) равнобедренный, его биссектриса \(AM\) является высотой, а точки \(Q\) и \(M\) лежат на отрезке \(OA\). Поскольку треугольник \(AOB\) также равнобедренный (\(OA = OB \)как радиусы одной окружности), то \(∠OBA = ∠OAB\), или \(90^{o} − 2\alpha = 3\alpha\). Откуда находим, что \(\alpha = 18^{o}\). Следовательно, \(∠ACB = ∠ABC = = 2\alpha = 36^{o}\)

Ответ: \(36^{o}, 36^{o}, 108^{o}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что отличная от \(A\) точка пересечения окружностей, построенных на сторонах \(AB \)и \(AC\) треугольника \(ABC \) как на диаметрах, лежит на прямой \(BC\).

Решение №15934: Эта точка — основание высоты, проведенной из вершины \(A\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника.

Пока решения данной задачи,увы,нет...

Ответ: \(45^{o}, 45^{o}, 90^{o}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу в отношении \(1 : 3\). Найдите острые углы треугольника.

Решение №15936: Проведите медиану из вершины прямого угла.

Ответ: \(30^{o}, 60^{o}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через точку \(A\) проведена прямая, пересекающая окружность с диаметром \(AB\) в точке \(K\), отличной от \(A\), а окружность с центром \(B\) — в точках \(M\)и \(N\). Докажите, что \(MK = KN\).

Решение №15937: \(BK ⊥ MN\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите геометрическое место оснований перпендикуляров, опущенных из данной точки на прямые, проходящие через другую данную точку.

Пока решения данной задачи,увы,нет...

Ответ: Окружность, построенная на отрезке с концами в данных точках как на диаметре.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через данную точку окружности проведите хорду, которая бы делилась данной хордой пополам.

Решение №15939: Пусть \(M\) — данная точка окружности с центром \(O\) (рис. 146), \(AB\) — данная хорда. Если \(AB\) — диаметр, то искомая хорда — также диаметр. Если \(AB\) — хорда, не являющаяся диаметром, \(MN\) — искомая хорда, а \(K\) — ее середина, то \(OK ⊥ MN\), т. е. радиус \OM\ виден из точки \(K\) под прямым углом, значит, середина искомой хорды \(MN\) лежит на окружности с диаметром \(OM\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что точка пересечения биссектрис треугольника \(ABC\), точки \(B\) и \(C\), а также точка пересечения биссектрис внешних углов с вершинами \(B\) и \(C\) лежат на одной окружности.

Решение №15940: Пусть \(P\) — точка пересечения биссектрис треугольника \(ABC\) (рис. 149), а \(Q\) — точка пересечения биссектрис внешних углов при вершинах \(B\) и \(C\). Тогда отрезок \(PQ\) виден из точек \(B\) и \(C \) под прямым углом

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Точки \(A\), \(B\), \(C\) и \(D\) последовательно расположены на окружности, причем центр \(O\) окружности расположен внутри четырехугольника \(ABCD\). Точки \(K\), \(L\), \(M\) и \(N\) — середины отрезков \(AB\), \(BC\), \(CD\) и \(AD\) соответственно. Докажите, что \(∠KON + ∠MOL = 180^{o}\) .

Решение №15941: \(OK, OL, OM и ON\) — биссектрисы равнобедренных треугольников \(AOB, BOC, COD и DOA\), проведенные к основаниям (рис. 150).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Даны две точки \(A\) и \(B\). Найдите геометрическое место точек, каждая из которых симметрична точке \(A\) относительно некоторой прямой, проходящей через точку \(B\).

Решение №15942: Окружность с центром \(B\) и радиусом \(BA\). Указание. Если точка \(M\) симметрична точке \(A\) относительно некоторой прямой (рис. 152), проходящей через точку \(B\), то \(MB = BA\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через точку пересечения двух окружностей проведите секущую, часть которой внутри окружностей была бы равна данному отрезку (центры окружностей расположены по разные стороны от общей хорды).

Решение №15943: Предположим, что нужная секущая построена (рис. 153). Пусть \(O_{1}\) и \(O_{2}\) — центры данных окружностей, \(r\) и \(R\) — их радиусы \((r < R)\), \(M\) — общая точка этих окружностей, \(A\) и \(B\) — концы секущей (\(A\) на первой окружности, \(B\) — на второй), проходящей через точку \(M\), \(AB = a\) — данный отрезок. Пусть \(P\) и \(Q\) — проекции точек \(O_{1}\) и \(O_{2}\) на прямую \(AB\). Тогда \(P\) и \(Q\) — середины хорд \(AM\) и \(BM\) данных окружностей. Если \(F\) — проекция точки \(O_{1}\) на прямую \(O_{2}Q\), то в прямоугольном треугольнике \(O_{1}FO_{2}\) известен катет: \(O_{1}F = PQ = \frac{1}{2}AB = \frac{1}{2}a. Отсюда вытекает следующий способ построения. Строим прямоугольный треугольник \(O_{1}FO_{2}\) по гипотенузе \(O_{1}O_{2} и катету \(O_{1}F = \frac{1}{2}a\) и через точку \(M\) проводим прямую, параллельную \(O_{1}F\).

Ответ: NaN

На прямой последовательно откладываются точки \( A\), \( B\), \( C\) и \( D\), причем \( AB=BC=CD=6\). Найдтите расстояние между серединами отрезков \(AB\) и \(CD\).

Пока решения данной задачи,увы,нет...

Ответ: 12

На прямой последовательно откладываются точки \( A\), \( B\), \( C\), \( D\) и \(F\), причем \( AB=BC=CD=DE=EF\). Найдите отношение \( AD:DF\), \(AC:AF\),\(BD:CF\).

Пока решения данной задачи,увы,нет...

Ответ: {1,5;0,4;2/3}

Точка \(M\) — середина отрезка \(AB\), а точка \(N\) — середина отрезка \(MB\). Найдите отношения \(AM:MN\), \(BN:AM\) и \(MN:AB\).

Пока решения данной задачи,увы,нет...

Ответ: {2;0,5;0,25}

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Точка \(K\) отрезка \(AB\), равного \( 12\), расположена на \( 5\) ближе к \(F\), чем к \(B\). Найдите \(АК\) и \(ВК\).

Пока решения данной задачи,увы,нет...

Ответ: {3,5;8,5}

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Точка \(M\) расположена на отрезке \(AN\), а точка \(N\) — на отрезке \(BM\). Известно, что \(AB=18\) и \(AM:MN:NM=1:2:3\). Найдите \(MN\)

Пока решения данной задачи,увы,нет...

Ответ: 6

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На прямой выбраны три точки \( A\), \( B\) и \( C\), причем \(AB=1\), \( BC=3\). Чему может равно \( AС\)? Укажите все возможные варианты.

Пока решения данной задачи,увы,нет...

Ответ: {2;4}

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На прямой выбраны четыре точки \( A\), \( B\), \( C\) и \( D\), причем \(AB=3\), \(BC=2\), \(CD=4\). Чему может быть равно \(AD\)? Укажите все возможные варианты.

Пока решения данной задачи,увы,нет...

Ответ: {1, 3, 5 или 7}

На линейке отмечены три деления: \(0\), \(2\) и \(5\). Как отложить с её помощью отрезок длинной \(6\)?

Пока решения данной задачи,увы,нет...

Ответ: {6 = 2 · 5−2 · 2}

На линейке отмечены три деления: \(0\), \(7\) и \(11\). Как отложить с её помощью отрезок длинной: \(6;\)?

Пока решения данной задачи,увы,нет...

Ответ: {8 = 2·11−2·7}

На линейке отмечены три деления: \(0\), \(7\) и \(11\). Как отложить с её помощью отрезок длинной: \\(5\);?

Пока решения данной задачи,увы,нет...

Ответ: {5 = 7·7−4·11}

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На прямой взяты точки \( A\), \( O\), \( B\). Точки \(A_{1}\) и \(B_{1}\) симметричны соответственно точкам \(A\) и \(B\) относительно точки \( O\). Найдите \(A_{1}B\), если \(AB_{1}=2\).

Пока решения данной задачи,увы,нет...

Ответ: 2

Точка \(B\) лежит на отрезке \(AC\) длинной \(5\). Найдите расстояние между серединами отрезков \(AB\) и \(BС\).

Пока решения данной задачи,увы,нет...

Ответ: 2.5

Точки \( A\), \(B\), \( C\) последовательно расположены на одной прямой и \(AB:BC=3:4\). Найдите отношения \(AB:AC\) и \(BС:AB\).

Пока решения данной задачи,увы,нет...

Ответ: {3/7;4/7}

Точки \( A\), \(B\), \( C\) последовательно расположены на одной прямой и \(AС:BC=2:5\). Найдите отношения \(AС:AB\) и \(BС:AB\).

Пока решения данной задачи,увы,нет...

Ответ: {2/7} и {5/7}; {2/}3 и {5/3}

Точки \( A\), \(B\), \( C\) последовательно расположены на одной прямой и \(AС:BC=m:n\) (\(m\) и \(n\) —натуральные числа). Найдите отношения \( AC:AB\) и \( BC:AB\).

Пока решения данной задачи,увы,нет...

Ответ: {m/(m+n) и n/(m + n); m/(m − n) и n/(m − n); m/(n − m) и n/(n − m)}

Точка \(B\) делит отрезков \(AC\) в отношении \(AB:BC=2:1\). Точка \(D\) Делит отрезок \(AB\) в отношении \(AD:DB=3:2\). В каком отношении точка \(D\) делит отрезок \(AC\)?

Пока решения данной задачи,увы,нет...

Ответ: 2/3

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Даны точки \(A\) и \(B\). Где на прямой \(AB\) расположены точки, расстояние от которых до точки \(A\) больше, чем до точки \(B\)?

Пока решения данной задачи,увы,нет...

Ответ: На луче {MA} без точки {M} ({M} – середина отрезка {AB})

Сколько точек пересечения могут иметь три прямые, каждые две из которых пересекаются?

Решение №15961: По условию две данные прямые \( l_{1}\) и \(l_{2}\) пересекаются в некоторой точке \(О\). Третья прямая \(l_{3}\) либо проходит через точку \(О\) (рис. 1, а), либо не проходит через эту точку. Во втором случае прямая \(l_{3}\) пересекает прямые \(l_{1}\) и \(l_{2}\) в разных точках (рис. 1, б), поскольку единственная общая точка прямых \(l_{1}\) и \(l_{2}\)- это точка \(О\). В первом случае прямые имеют одну общую точку, а во втором случае прямые имеют три общие точки.

Ответ: Одну или три.

Точки \(А\), \(В\), \(С\), \(D\) не лежат на одной прямой, прямая \(АВ\) пересекает отрезок \(CD\), прямая \(CD\) пересекает отрезок \(АВ\). Докажите, что отрезки \(АВ\) и \(CD\) пересекаются.

Решение №15962: Пусть \(О\) — точка пересечения прямых \(АВ\) и \(CD\) (рис. 2). Прямая \(АВ\) пересекает отрезок \(СD\), поэтому точка \(О\) лежит между точками \(С\) и \(D\), т. е. она лежит на отрезке \(CD\). Прямая \(CD\) пересекает отрезок \(АВ\), поэтому точка \(О\) лежит между точками \(А\) и \(В\), т. е. она лежит на отрезке \(АВ\).

Ответ: NaN

На сколько частей могут делить плоскость три прямые, каждые две из которых пересекаются?

Решение №15963: Как было показано при разборе примера 1, возможны два случая: три прямые пересекаются либо в одной точке, либо в трёх точках. В первом случае они разделяют плоскость на 6 частей, а во втором на 7 частей.

Ответ: На 6 или на 7.