№15963
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Сколько точек пересечения могут иметь три прямые, каждые две из которых пересекаются?
Ответ
Одну или три.
Решение № 15961:
По условию две данные прямые \( l_{1}\) и \(l_{2}\) пересекаются в некоторой точке \(О\). Третья прямая \(l_{3}\) либо проходит через точку \(О\) (рис. 1, а), либо не проходит через эту точку. Во втором случае прямая \(l_{3}\) пересекает прямые \(l_{1}\) и \(l_{2}\) в разных точках (рис. 1, б), поскольку единственная общая точка прямых \(l_{1}\) и \(l_{2}\)- это точка \(О\). В первом случае прямые имеют одну общую точку, а во втором случае прямые имеют три общие точки. <img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/prasolov_7_9/7_geometry/1_answer.png' />