Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 4
Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 10
Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 6
Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 5
Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 15/14
Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 113/18
Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 891/7
Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 1/3
Экзамены с этой задачей: Математика ЕГЭ математика профиль Вычисления и преобразования ОГЭ Числа и вычисления Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 54.75
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №2072: \(\frac{a^{4}-64ab^{3}}{a^{2}-2ab+b^{2}} \cdot \frac{a^{2}-b^{2}}{a^{2}b-16b^{2}}:\frac{a^{3}+4a^{2}b+16ab^{2}}{ab+4b^{2}}=\frac{a+b}{a-b}=\frac{a(a^{3}-64b^{3}) \cdot (a-b)(a+b) \cdot b(a+4b)}{(a-b)^{2}b(a^{2}-16b^{2})a(a^{2}+4ab+16b^{2})}=\frac{a(a-4b)(a^{2}+4ab+16b^{2})(a-b)(a+b)b(a+4b)}{(a-b)^{2}b(a-4b)(a+4b)a(a^{2}+4ab+16b^{2})}=\frac{a+b}{a-b}; \frac{a+b}{a-b}=\frac{a+b}{a-b}\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №2073: \(\frac{x^{3}x+125z}{x^{2}-16z^{2}}:\frac{x^{3}-25x}{x^{2}-8xz+16z^{2}} \cdot \frac{x+4z}{x^{2}-5x+25}:\frac{x-4z}{x-5}=\frac{z(x^{3}+125) \cdot (x-4z)^{2}(x+4z)(x-5)}{(x-4z)(x+4z)z(x^{2}-25)(x^{2}05x+25)(x-4z)}=\frac{z(x+5)(x^{2}_5x+25)(x-4z)^{2}(x+4z)(x-5)}{x(x-4z)(x+4z)(x-5)(x+5)(x^{2}-5x+25)(x-4z)}=\frac{z}{x}; \frac{z}x{}=\frac{z}{x}\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №2074: \(\frac{4x^{2}}{2x-y}:\frac{12x^{3}}{4x^{2}-y^{2}} \cdot \frac{2x^{2}}{6x^{2}+3xy}=\frac{4x^{2}(2x-y)(2x+y) \cdot 2x^{2}}{(2x-y) \cdot 12x^{3} \cdot 3x(2x+y)}=\frac{2}{9}\)
Ответ: \(\frac{2}{9}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №2081: \(y=\frac{x^{2}-4x}{(x-4)^{2}} \cdot \frac{x^{2}-16}{2x}=\frac{x(x-4) \cdot (x-4)(x+4)}{(x-4)^{2}2x}=\frac{x+4}{2}=\frac{x+4}{2}=\frac{x}{2}+2; y=\frac{x}{2}+2; x \neq 0, x \neq 4\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №2083: \(y=\frac{x^{2}+x-6}{x}:\frac{x-2}{2x}=\frac{(x^{2}+x-6) \cdot 2x}{x(x-2)}=\frac{2(x^{2}+x-6)}{x-2}=\frac{(x^{2}-4+x-2)^{2}}{x-2}=\frac{(x-2)(x+2)+(x-2)^{2}}{x-2}=2(x+2+1)=2(x+3); y=2(x+3)=2x+6; y=2x+6; x \neq 0; x-2 \neq 0, x \neq 2\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, Сложение и вычитание корней,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №2817: \(\left ( a^{4}-2b^{4} \right )\sqrt{\frac{a+b}{a-b}}-\left ( a^{2}+b^{2} \right )\sqrt{\left ( a+b \right )^{3}\left ( a-b \right )}+\frac{b^{3}}{a-b}\sqrt{a^{2}b^{4}-b^{6}}=0\)
Ответ: 0
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, Задачи на все действия над радикалом,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №2975: \(\left ( 1+\sqrt{\frac{a-x}{a+x}}\right ):\left ( 1-\sqrt{\frac{a-x}{a+x}} \right )=\frac{1+\sqrt{\frac{a-x}{a+x}}}{1-\sqrt{\frac{a-x}{a+x}}}=\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}1-\sqrt{\frac{a-x}{a+x}}}=\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=\frac{a+\sqrt{a^{2}-x^{2}}}{x}\)
Ответ: \(\frac{a+\sqrt{a^{2}-x^{2}}}{x}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Уравнения касательной и нормали,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: -2
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Уравнения касательной и нормали,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: \(a=4\left ( \frac{2}{ln2}-1 \right )\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Уравнения касательной и нормали,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 4e
Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на оптимальный выбор
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: \(t=\frac{s(2x+1)}{(25+x)(x+1)}\); \(x_{max}=3\)
Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на оптимальный выбор
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 6
Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на оптимальный выбор
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: <0,5;0,75>
Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на оптимальный выбор
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 1
Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на оптимальный выбор
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 0.8
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3469: По формуле суммы первых n членов арифметической прогрессии \(1+3+...+\left ( 2n-1 \right )=\frac{1+\left ( 2n-1 \right )}{2}n=n^{2}\). Тогда \(x_{n}=\frac{n^{2}}{n^{2}+1}=1-\frac{1}{n^{2}+1}\). Последовательность \(\left \{ x_{n} \right \} \)ограничена снизу числом 0, а сверху числом 1.
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3472: Можно доказать с помощью метода математической индукции два утверждения: 1) \(\forall n\in N x_{n+1}> x_{n} и 2) \forall n\in N, n\geqslant 2 x_{n}< 3 \) База индукции очевидна. Переход индукциидоказывает цепочка соотношений \(x_{n+1}=\sqrt{3+x_{n}}> \sqrt{3+x_{n-1}}=x_{n}\), верная в силу свойств корней и индукционного предположения \(x_{n}> x_{n-1}\). 2) База индукции: \(x_{2}=\sqrt{7}< 3\). Переход индукции: В силу индукционного предположения \(x_{n}< 3\), а тогда \(x_{n+1}^{2}=3+x_{n}< 3+3=6\), и следовательно, \(x_{n+1}< 3\). Из первого и второго утверждения следует ограниченность последовательности\(\left \{ x_{n} \right \}.\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3478: Необязательно ограничена. Например, при \(x_{n}=\frac{1}{n} \) получаем последовательность \(y_{n}=-\log n\), которая является неограниченной.
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3488: При \(x\in \left ( 2k;2k+1 \right )\) убывает; при \(x\in \left ( 2k-1;2k \right \)) возрастает; при \(x\in Z\) является константой, поэтому может быть сочтена как нестрого возрастающей, так и нестрого убывающей. 1) Если \(\sin \pi x> 0\Leftrightarrow 2k< x< 1+2k, k\in Z.\) Тогда \(\forall n\in N x_{n}=\frac{\sin \pi x}{n}> \frac{\sin \pi x}{n+1}=x_{n+1}\), значит, последовательность \(\left \{ x_{n} \right \}\) убывающая. 2) Если \(\sin \pi x< 0\Leftrightarrow 2k+1< x< 2+2k, k\in Z\). Тогда \(\forall n\in N x_{n}=\frac{\sin \pi x}{n}< \frac{\sin \pi x}{n+1}=x_{n+1}\), значит, последовательность \(\left \{ x_{n} \right \}\) убывающая. 3) Если \(x\in Z, то x_{n}=0\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3494: \( \lim_{n \to \propto} \frac{n^{2}+1}{n^{2}}=1\Leftrightarrow \forall \varepsilon > 0 \exists N\varepsilon \in N:\forall n\geqslant N\varepsilon \left | \frac{n^{2}+1}{n^{2}} -1\right |< \varepsilon\) . Рассмотрим неравенство \(\left | \frac{n^{2}+1}{n^{2}} -1\right |< \varepsilon \Leftrightarrow \frac{1}{n^{2}}< \varepsilon \Leftrightarrow n> \frac{1}{\sqrt{\varepsilon }}\), т.е. в качестве \(N_{\varepsilon }\) можно взять \(N_{\varepsilon }=\left [ \frac{1}{\sqrt{\varepsilon }} \right ]+1 \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3498: Докажем, что \(\lim_{n \to \propto} \frac{1}{2n^{2}+5n}=0\). Рассмотрим неравенство \(\left | \frac{1}{2n^{2}+5n} \right |< \varepsilon \Leftrightarrow \frac{1}{2n^{2}+5n}< \varepsilon \Leftrightarrow 2n^{2}+5n> \frac{1}{\varepsilon}\). Так как \(2n^{2}+5n> 2n^{2}\), то решим неравенство \(2n^{2}> \frac{1}{\varepsilon }\), откуда \(n> \sqrt{\frac{1}{2\varepsilon }}\) и в качестве \(N_{\varepsilon } \) можно взять \(N_{\varepsilon }=\left [ \sqrt{\frac{1}{2\varepsilon }} \right ]+1. \)
Ответ: NaN