Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Велосипедист отъехал от станции в тот момент, когда пешеход отошел от нее на $1,6$ км, и через $15$ мин догнал пешехода. С какой скоростью шел пешеход, если велосипедист ехал в \(2\frac{1}{3}\) раза быстрее?

Решение №6: Для решения задачи выполним следующие шаги:

  1. Обозначим скорость пешехода как \(v_п\) км/ч.
  2. Скорость велосипедиста будет \(v_в = 2\frac{1}{3} v_п = \frac{7}{3} v_п\) км/ч.
  3. За 15 минут (что составляет \(\frac{15}{60} = \frac{1}{4}\) часа) велосипедист догнал пешехода.
  4. За это время велосипедист проехал расстояние \(s_в = v_в \cdot \frac{1}{4} = \frac{7}{3} v_п \cdot \frac{1}{4} = \frac{7}{12} v_п\) км.
  5. За это же время пешеход прошел расстояние \(s_п = v_п \cdot \frac{1}{4}\) км.
  6. Велосипедист догнал пешехода, значит, он проехал расстояние, равное 1,6 км плюс расстояние, пройденное пешеходом за 15 минут: \[ \frac{7}{12} v_п = 1,6 + \frac{1}{4} v_п \]
  7. Решим уравнение: \[ \frac{7}{12} v_п = 1,6 + \frac{1}{4} v_п \] Для этого приведем все к общему знаменателю: \[ \frac{7}{12} v_п - \frac{1}{4} v_п = 1,6 \] \[ \frac{7}{12} v_п - \frac{3}{12} v_п = 1,6 \] \[ \frac{4}{12} v_п = 1,6 \] \[ \frac{1}{3} v_п = 1,6 \] \[ v_п = 1,6 \cdot 3 \] \[ v_п = 4,8 \text{ км/ч} \]
Таким образом, скорость пешехода составляет \(4,8\) км/ч. Ответ: \(4,8\) км/ч

Ответ: 4.8

Расстояние между двумя пристанями равно $12,3$ км. За сколько времени моторная лодка проплывет путь от одной пристани до другой и обратно, если собственная скорость лодки $7,2$ \( \frac{км}{ч}\), а скорость течения реки составляет \(\frac{1}{6}\) скорости лодки?

Решение №14: Для решения задачи о времени, за которое моторная лодка проплывет путь от одной пристани до другой и обратно, выполним следующие шаги:

  1. Определим скорость течения реки: \[ v_{\text{течения}} = \frac{1}{6} \cdot 7,2 \, \frac{\text{км}}{\text{ч}} = 1,2 \, \frac{\text{км}}{\text{ч}} \]
  2. Определим скорость лодки по течению: \[ v_{\text{по течению}} = 7,2 \, \frac{\text{км}}{\text{ч}} + 1,2 \, \frac{\text{км}}{\text{ч}} = 8,4 \, \frac{\text{км}}{\text{ч}} \]
  3. Определим скорость лодки против течения: \[ v_{\text{против течения}} = 7,2 \, \frac{\text{км}}{\text{ч}} - 1,2 \, \frac{\text{км}}{\text{ч}} = 6 \, \frac{\text{км}}{\text{ч}} \]
  4. Вычислим время, за которое лодка проплывет путь до другой пристани по течению: \[ t_{\text{по течению}} = \frac{12,3 \, \text{км}}{8,4 \, \frac{\text{км}}{\text{ч}}} = 1,464 \, \text{ч} \]
  5. Вычислим время, за которое лодка проплывет путь обратно против течения: \[ t_{\text{против течения}} = \frac{12,3 \, \text{км}}{6 \, \frac{\text{км}}{\text{ч}}} = 2,05 \, \text{ч} \]
  6. Найдем общее время пути: \[ t_{\text{общее}} = t_{\text{по течению}} + t_{\text{против течения}} = 1,464 \, \text{ч} + 2,05 \, \text{ч} = 3,514 \, \text{ч} \]
Таким образом, общее время, за которое моторная лодка проплывет путь от одной пристани до другой и обратно, составляет примерно \(3,514\) часа. Ответ: \(3,514\) часа.

Ответ: 3.514

Лодка проплыла некоторое расстояние по озеру за $5$ ч. Такое же расстояние плот проплывает по реке за $20$ ч. Сколько времени затратит лодка на тот же путь по течению реки?

Решение №38: Для решения задачи выполним следующие шаги:

  1. Обозначим скорость лодки на озере как \(v_L\) и скорость плота на реке как \(v_P\).
  2. Пусть \(S\) — расстояние, которое проплывают лодка и плот.
  3. Запишем уравнения для времени прохождения расстояния \(S\): \[ \frac{S}{v_L} = 5 \quad \text{и} \quad \frac{S}{v_P} = 20 \]
  4. Выразим скорости \(v_L\) и \(v_P\) через расстояние \(S\): \[ v_L = \frac{S}{5} \quad \text{и} \quad v_P = \frac{S}{20} \]
  5. Пусть \(v_T\) — скорость течения реки. Тогда скорость лодки по течению реки будет \(v_L + v_T\).
  6. Запишем уравнение для времени \(t\), которое лодка затратит на прохождение расстояния \(S\) по течению реки: \[ \frac{S}{v_L + v_T} = t \]
  7. Подставим выражения для \(v_L\) и \(v_P\) в уравнение: \[ \frac{S}{\frac{S}{5} + v_T} = t \]
  8. Поскольку \(v_T = v_P\) (скорость течения реки равна скорости плота), подставим \(v_P\): \[ \frac{S}{\frac{S}{5} + \frac{S}{20}} = t \]
  9. Упростим выражение в знаменателе: \[ \frac{S}{\frac{S}{5} + \frac{S}{20}} = \frac{S}{\frac{4S + S}{20}} = \frac{S}{\frac{5S}{20}} = \frac{S}{\frac{S}{4}} = 4 \]
  10. Таким образом, лодка затратит 4 часа на прохождение того же расстояния по течению реки.
Ответ: 4 часа.

Ответ: 4

Собственная скорость катера равна $14,7$ км, а его скорость против течения реки $10,2$ \( \frac{км}{ч} \). Какое расстояние проплывет катер, если будет двигаться $2$ ч по течению реки и $4,5$ ч против течения?

Решение №45: Для решения задачи о расстоянии, которое проплывет катер, выполним следующие шаги:

  1. Запишем известные данные:
    • Собственная скорость катера: \( v_c = 14,7 \) км/ч.
    • Скорость катера против течения реки: \( v_{up} = 10,2 \) км/ч.
    • Время движения по течению реки: \( t_{down} = 2 \) ч.
    • Время движения против течения реки: \( t_{up} = 4,5 \) ч.
  2. Найдем скорость течения реки \( v_r \):
    • Скорость катера по течению реки: \( v_{down} = v_c + v_r \).
    • Скорость катера против течения реки: \( v_{up} = v_c - v_r \).
    Подставим известные значения: \[ v_{up} = v_c - v_r \implies 10,2 = 14,7 - v_r \implies v_r = 14,7 - 10,2 = 4,5 \text{ км/ч} \]
  3. Найдем скорость катера по течению реки \( v_{down} \): \[ v_{down} = v_c + v_r = 14,7 + 4,5 = 19,2 \text{ км/ч} \]
  4. Вычислим расстояние, пройденное по течению реки за \( 2 \) ч: \[ S_{down} = v_{down} \cdot t_{down} = 19,2 \cdot 2 = 38,4 \text{ км} \]
  5. Вычислим расстояние, пройденное против течения реки за \( 4,5 \) ч: \[ S_{up} = v_{up} \cdot t_{up} = 10,2 \cdot 4,5 = 45,9 \text{ км} \]
  6. Найдем общее расстояние, пройденное катером: \[ S_{total} = S_{down} + S_{up} = 38,4 + 45,9 = 84,3 \text{ км} \]
Таким образом, катер проплывет расстояние \( 84,3 \) км. Ответ: \( 84,3 \) км.

Ответ: 84.3

Из города \( A\) в город \( B\), расстояние между которыми \(620\) км выехала легковая машина со скоростью \( 60 \frac{км}{ч} \). Через \(2\) два часа из города \( B\) в город \( A\) выехал грузовик со скоростью \( 40\frac{км}{ч} \). На каком расстоянии от города \( A \) произошла встреча?

Решение №65: Для решения задачи о встрече легковой машины и грузовика выполним следующие шаги:

  1. Запишем условия задачи:
    • Легковая машина выехала из города \(A\) в город \(B\) со скоростью \(60 \frac{км}{ч}\).
    • Грузовик выехал из города \(B\) в город \(A\) со скоростью \(40 \frac{км}{ч}\) через 2 часа после выезда легковой машины.
    • Расстояние между городами \(A\) и \(B\) составляет \(620\) км.
  2. Определим расстояние, которое проехала легковая машина за 2 часа: \[ \text{Расстояние} = 60 \frac{км}{ч} \times 2 \text{ ч} = 120 \text{ км} \]
  3. Таким образом, через 2 часа легковая машина находится на расстоянии \(120\) км от города \(A\), а расстояние между легковой машиной и городом \(B\) составляет: \[ 620 \text{ км} - 120 \text{ км} = 500 \text{ км} \]
  4. Теперь грузовик выезжает из города \(B\) и движется навстречу легковой машине. Расстояние между ними составляет \(500\) км. Обозначим время до встречи как \(t\) часов.
  5. Запишем уравнение для определения времени до встречи: \[ 60t + 40t = 500 \]
  6. Упростим уравнение: \[ 100t = 500 \]
  7. Решим уравнение для \(t\): \[ t = \frac{500}{100} = 5 \text{ ч} \]
  8. Определим расстояние, которое проедет легковая машина за это время: \[ 60 \frac{км}{ч} \times 5 \text{ ч} = 300 \text{ км} \]
  9. Таким образом, встреча произойдет на расстоянии \(300\) км от города \(A\).
Ответ: \(300\) км.

Ответ: 420

Два человека отправляются из одного и того же места на прогулку до опушки леса, находящейся в $4$ км от места отправления. Один идет со скоростью $3,3$ \(\frac{км}{ч} \), а другой – со скоростью $5,5$ \( \frac{км}{ч} \). Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии (в километрах) от точки отправления произойдет их встреча?

Решение №67: Для решения задачи о встрече двух человек, отправившихся на прогулку, выполним следующие шаги:

  1. Обозначим расстояние до опушки леса как \(d = 4\) км.
  2. Обозначим скорости двух людей как \(v_1 = 3,3\) \(\frac{км}{ч}\) и \(v_2 = 5,5\) \(\frac{км}{ч}\).
  3. Время, за которое второй человек доходит до опушки леса: \[ t_1 = \frac{d}{v_2} = \frac{4}{5,5} = \frac{4}{5.5} = \frac{4 \cdot 10}{55} = \frac{40}{55} = \frac{8}{11} \text{ часов} \]
  4. За это время первый человек пройдет расстояние: \[ s_1 = v_1 \cdot t_1 = 3,3 \cdot \frac{8}{11} = \frac{3,3 \cdot 8}{11} = \frac{26,4}{11} = \frac{264}{110} = \frac{132}{55} = \frac{24}{10} = 2,4 \text{ км} \]
  5. Теперь второй человек возвращается обратно с той же скоростью \(v_2\). Расстояние, которое он должен пройти до встречи с первым человеком, равно \(4 - 2,4 = 1,6\) км.
  6. Время, за которое второй человек пройдет это расстояние: \[ t_2 = \frac{1,6}{v_2} = \frac{1,6}{5,5} = \frac{1,6 \cdot 10}{55} = \frac{16}{55} = \frac{16}{55} \text{ часов} \]
  7. За это время первый человек пройдет дополнительное расстояние: \[ s_2 = v_1 \cdot t_2 = 3,3 \cdot \frac{16}{55} = \frac{3,3 \cdot 16}{55} = \frac{52,8}{55} = \frac{528}{550} = \frac{264}{275} = \frac{264}{275} \text{ км} \]
  8. Таким образом, полное расстояние, которое пройдет первый человек до встречи: \[ s = s_1 + s_2 = 2,4 + \frac{264}{275} = 2,4 + 0,96 = 3,36 \text{ км} \]
Таким образом, встреча произойдет на расстоянии \(3,36\) км от точки отправления. Ответ: \(3,36\) км.

Ответ: 1.5

Расстояние между станциями $350$ км. От этих станций одновременно навстречу друг другу вышли два поезда. Они встретились через $2,5$ часа. Определите скорость первого поезда, если скорость второго равна $65$ км.

Решение №77: Для решения задачи определим скорость первого поезда, зная расстояние между станциями, время до встречи и скорость второго поезда.

  1. Запишем известные данные:
    • Расстояние между станциями: \(350\) км.
    • Время до встречи: \(2,5\) часа.
    • Скорость второго поезда: \(65\) км/ч.
  2. Обозначим скорость первого поезда как \(v_1\).
  3. Запишем уравнение, связывающее расстояние, время и суммарную скорость поездов: \[ 350 = (v_1 + 65) \cdot 2,5 \]
  4. Раскроем скобки и умножим обе части уравнения на \(2,5\): \[ 350 = 2,5 \cdot v_1 + 2,5 \cdot 65 \]
  5. Упростим выражение: \[ 350 = 2,5 \cdot v_1 + 162,5 \]
  6. Вычтем \(162,5\) из обеих частей уравнения: \[ 350 - 162,5 = 2,5 \cdot v_1 \]
  7. Упростим выражение: \[ 187,5 = 2,5 \cdot v_1 \]
  8. Разделим обе части уравнения на \(2,5\): \[ v_1 = \frac{187,5}{2,5} \]
  9. Вычислим значение \(v_1\): \[ v_1 = 75 \]
Таким образом, скорость первого поезда равна \(75\) км/ч. Ответ: \(75\) км/ч.

Ответ: 75

Города $A$ и $B$ расположены на одном шоссе. Из этих городов одновременно в одном направлении выехали два автобуса. Первый автобус двигался со скоростью $54$ $\frac{км}{ч}$, что составляет $0,6$ скорости второго автобуса. Второй автобус догнал первый через $1$ ч $30$ мин после выезда. На каком расстоянии друг от друга были автобусы через $24$ мин после выезда?

Решение №85: Для решения задачи определим скорости автобусов и найдем расстояние между ними через 24 минуты после выезда.

  1. Обозначим скорость первого автобуса как \(v_1 = 54\) км/ч. По условию, это составляет \(0,6\) от скорости второго автобуса \(v_2\).
  2. Установим зависимость скоростей: \[ v_1 = 0,6 \cdot v_2 \] Подставим значение \(v_1\): \[ 54 = 0,6 \cdot v_2 \]
  3. Решим уравнение для \(v_2\): \[ v_2 = \frac{54}{0,6} = 90 \text{ км/ч} \]
  4. Второй автобус догнал первый через 1 час 30 минут (или 1,5 часа). Время догона одинаково для обоих автобусов, поэтому они прошли одинаковое расстояние \(d\).
  5. Выразим расстояние \(d\), которое прошел первый автобус за 1,5 часа: \[ d = v_1 \cdot t = 54 \cdot 1,5 = 81 \text{ км} \]
  6. Второй автобус прошел это же расстояние за 1,5 часа: \[ d = v_2 \cdot t_2 = 90 \cdot t_2 = 81 \text{ км} \] Решим уравнение для \(t_2\): \[ 90 \cdot t_2 = 81 \] \[ t_2 = \frac{81}{90} = \frac{9}{10} = 0,9 \text{ часа} \]
  7. Теперь найдем расстояние между автобусами через 24 минуты (0,4 часа) после выезда. Первый автобус проехал: \[ d_1 = v_1 \cdot 0,4 = 54 \cdot 0,4 = 21,6 \text{ км} \]
  8. Второй автобус проехал: \[ d_2 = v_2 \cdot 0,4 = 90 \cdot 0,4 = 36 \text{ км} \]
  9. Расстояние между автобусами через 24 минуты: \[ \Delta d = d_2 - d_1 = 36 - 21,6 = 14,4 \text{ км} \]
Таким образом, автобусы были на расстоянии 14,4 км друг от друга через 24 минуты после выезда. Ответ: 14,4 км

Ответ: 39.6

Вычислите: \(0,2\cdot 0,25\)

Решение №132: Для решения задачи \(0,2 \cdot 0,25\) выполним следующие шаги:

  1. Запишем уравнение: \[ 0,2 \cdot 0,25 \]
  2. Переведем десятичные дроби в обыкновенные дроби: \[ 0,2 = \frac{2}{10} = \frac{1}{5}, \quad 0,25 = \frac{25}{100} = \frac{1}{4} \]
  3. Подставим обыкновенные дроби в уравнение: \[ \frac{1}{5} \cdot \frac{1}{4} \]
  4. Умножим числители и знаменатели: \[ \frac{1 \cdot 1}{5 \cdot 4} = \frac{1}{20} \]
Таким образом, решение уравнения \(0,2 \cdot 0,25\) равно \(\frac{1}{20}\). Ответ: \(\frac{1}{20}\)

Ответ: 0.05

Вычислите: \(0,17 : 2\)

Решение №139: Для решения задачи \(0,17 : 2\) выполним следующие шаги:

  1. Запишем выражение: \[ 0,17 : 2 \]
  2. Выполним деление: \[ 0,17 \div 2 = 0,085 \]
Таким образом, результат вычисления \(0,17 : 2\) есть \(0,085\). Ответ: \(0,085\)

Ответ: 0.085

Найдите значение выражени: \(6,144:12+1,64\)

Решение №154: Для решения выражения \(6,144 : 12 + 1,64\) выполним следующие шаги:

  1. Запишем выражение: \[ 6,144 : 12 + 1,64 \]
  2. Выполним операцию деления: \[ 6,144 : 12 = 0,512 \]
  3. Сложим результат деления с числом 1,64: \[ 0,512 + 1,64 = 2,152 \]
Таким образом, значение выражения \(6,144 : 12 + 1,64\) равно \(2,152\). Ответ: 2,152

Ответ: 2.152

Найдите значение выражени: \(0,07+0,1001:1,43\)

Решение №155: Для решения выражения \(0,07 + \frac{0,1001}{1,43}\) выполним следующие шаги:

  1. Запишем выражение: \[ 0,07 + \frac{0,1001}{1,43} \]
  2. Выполним деление: \[ \frac{0,1001}{1,43} \approx 0,07 \]
  3. Сложим результаты: \[ 0,07 + 0,07 = 0,14 \]
Таким образом, значение выражения \(0,07 + \frac{0,1001}{1,43}\) равно \(0,14\). Ответ: \(0,14\)

Ответ: 0.14