№2083
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Постройте график функции: \(y=\frac{x^{2}+x-6}{x}:\frac{x-2}{2x}\)
Ответ
NaN
Решение № 2083:
\(y=\frac{x^{2}+x-6}{x}:\frac{x-2}{2x}=\frac{(x^{2}+x-6) \cdot 2x}{x(x-2)}=\frac{2(x^{2}+x-6)}{x-2}=\frac{(x^{2}-4+x-2)^{2}}{x-2}=\frac{(x-2)(x+2)+(x-2)^{2}}{x-2}=2(x+2+1)=2(x+3); y=2(x+3)=2x+6; y=2x+6; x \neq 0; x-2 \neq 0, x \neq 2\)