Задача №3488

№3488

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Выясните, является ли последовательность\( \left \{ x_{n} \right \} \)монотонной; монотонной, начиная с некоторого места:\(x_{n}=\frac{\sin \pi x}{n} \)

Ответ

NaN

Решение № 3488:

При \(x\in \left ( 2k;2k+1 \right )\) убывает; при \(x\in \left ( 2k-1;2k \right \)) возрастает; при \(x\in Z\) является константой, поэтому может быть сочтена как нестрого возрастающей, так и нестрого убывающей. 1) Если \(\sin \pi x> 0\Leftrightarrow 2k< x< 1+2k, k\in Z.\) Тогда \(\forall n\in N x_{n}=\frac{\sin \pi x}{n}> \frac{\sin \pi x}{n+1}=x_{n+1}\), значит, последовательность \(\left \{ x_{n} \right \}\) убывающая. 2) Если \(\sin \pi x< 0\Leftrightarrow 2k+1< x< 2+2k, k\in Z\). Тогда \(\forall n\in N x_{n}=\frac{\sin \pi x}{n}< \frac{\sin \pi x}{n+1}=x_{n+1}\), значит, последовательность \(\left \{ x_{n} \right \}\) убывающая. 3) Если \(x\in Z, то x_{n}=0\)

Поделиться в социальных сетях

Комментарии (0)