Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Докажите, используя определение предела. \(\lim_{n \to \propto} \frac{n^{2}+1}{n^{2}}=1 \)

Решение №3494: \( \lim_{n \to \propto} \frac{n^{2}+1}{n^{2}}=1\Leftrightarrow \forall \varepsilon > 0 \exists N\varepsilon \in N:\forall n\geqslant N\varepsilon \left | \frac{n^{2}+1}{n^{2}} -1\right |< \varepsilon\) . Рассмотрим неравенство \(\left | \frac{n^{2}+1}{n^{2}} -1\right |< \varepsilon \Leftrightarrow \frac{1}{n^{2}}< \varepsilon \Leftrightarrow n> \frac{1}{\sqrt{\varepsilon }}\), т.е. в качестве \(N_{\varepsilon }\) можно взять \(N_{\varepsilon }=\left [ \frac{1}{\sqrt{\varepsilon }} \right ]+1 \)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Найдите (угадайте), к какому числу сходится поледовательность, и докажите, что это число действительно предел последовательности по определению: \(x_{n}=\frac{1}{2n^{2}+5n} \)

Решение №3498: Докажем, что \(\lim_{n \to \propto} \frac{1}{2n^{2}+5n}=0\). Рассмотрим неравенство \(\left | \frac{1}{2n^{2}+5n} \right |< \varepsilon \Leftrightarrow \frac{1}{2n^{2}+5n}< \varepsilon \Leftrightarrow 2n^{2}+5n> \frac{1}{\varepsilon}\). Так как \(2n^{2}+5n> 2n^{2}\), то решим неравенство \(2n^{2}> \frac{1}{\varepsilon }\), откуда \(n> \sqrt{\frac{1}{2\varepsilon }}\) и в качестве \(N_{\varepsilon } \) можно взять \(N_{\varepsilon }=\left [ \sqrt{\frac{1}{2\varepsilon }} \right ]+1. \)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Найдите (угадайте), к какому числу сходится поледовательность, и докажите, что это число действительно предел последовательности по определению: \( \frac{1}{2}; 1; \frac{1}{4}; \frac{1}{3}; \frac{1}{8}; \frac{1}{5}; \frac{1}{16}; \frac{1}{7}; ....;\)

Решение №3499: 0

Ответ: 0

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Найдите (угадайте), к какому числу сходится поледовательность, и докажите, что это число действительно предел последовательности по определению: \( x_{n}=\left [ \frac{7n+5}{n^{2}+1} \right ] \)

Решение №3502: 0. Действительно, так как при n> 8 выполнено \(0< \frac{7n+5}{n^{2}+1}< 1\), то при n> 8 будет выполняться \(x_{n}=0.\)

Ответ: 0

Верно ли, что \(\lim_{n \to \propto} x_{n}=+\propto\), если все члены последовательноти \(\left \{ x_{n} \right \}\) - натуральные числа?

Решение №3509: Например поледовательность с общим членом \(x_{n}=1. \)

Ответ: Нет

Приведите примеры таких бесконечно малых последовательностей \(\left \{ x_{n} \right \} \) и бесконечно больших последовательностей \(\left \{ y_{n} \right \}\), что \(\lim_{n \to \propto} \left ( x_{n}*y_{n} \right )=B\), где B - конечное число\)

Решение №3513: \( x_{n}=\frac{1}{2n+1}; y_{n}=n. \)

Ответ: NaN

Приведите примеры таких бесконечно малых последовательностей \(\left \{ x_{n} \right \} \)и бесконечно больших последовательностей \(\left \{ y_{n} \right \}\), что \(\lim_{n \to \propto} \left ( x_{n}*y_{n} \right )\) не существует.

Решение №3515: \( x_{n}=\frac{\left ( -1 \right )^{n}}{n}; y_{n}=n. \)

Ответ: NaN

Приведите примеры таких бесконечно больших последовательностей \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{n \to \propto} \frac{x_{n}}{y_{n}}=1\)

Решение №3517: \( x_{n}=n-1; y_{n}=n+1\)

Ответ: NaN

Приведите примеры таких бесконечно больших последовательностей \left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{ n \to \propto} \frac{x_{n}}{y_{n}}\) не существует.

Решение №3519: \( x_{n}=\left ( -1 \right )^{n}; y_{n}=n \)

Ответ: NaN

Пусть \(\lim_{n \to \propto} x_{n}=\propto\). Верно ли, что \(\forall n\in N y_{n}\geqslant x_{n}, \lim_{n \to \propto} y_{n}=\propto \)

Решение №3528: Нет, например \(x_{n}=-n y_{n}=0\)

Ответ: NaN

Пусть \( \lim_{n \to \propto} x_{n}=\propto\). Верно ли, что \(\lim_{n \to \propto} y_{n}=\propto, \lim_{n \to \propto} \left ( x_{n}+y_{n} \right )=\propto\)

Решение №3529: Нет, например \(x_{n}=\left ( -1 \right )^{n}n y_{n}=\left ( -1 \right )^{n+1}n. Тогда \lim_{n \to \propto} \left ( x_{n}+y_{n} \right )=0 \)

Ответ: NaN

Приведите примеры таких бесконечно малых последовательностей \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{ n \to \propto} \frac{x_{n}}{y_{n}}\) не существует.

Решение №3534: \(x_{n}=\frac{\left ( -1 \right )^{n}}{n}, y_{n}=\frac{1}{n} \)

Ответ: NaN

Пусть \(\lim n \to \propto x_{n}y_{n}=0\). Следует ли отсюда, что: хотя бы один из пределов \(\lim_{n \to \propto} x_{n} или \lim_{n \to \propto} y_{n} \)

Решение №3536: Нет, например \(x_{n}=\left\{\begin{matrix}n, n=2k \\ \frac{1}{n^{2}}, n=2k-1 \end{matrix}\right. y_{n}=\left\{\begin{matrix}\frac{1}{n^{2}}, n=2k \\ n, n=2k-1 \end{matrix}\right.\) Тогда \(x_{n}y_{n}=\frac{1}{n}\)

Ответ: NaN

Докажите, что из существования предела частного двух последовательностей \(\lim_{n \to \propto} \left ( \frac{x_{n}}{y_{n}} \right ) \) не следует существования хотя бы одного из пределов \(\lim_{n \to \propto} x_{n} \)или\( \lim_{n \to \propto} y_{n}\)

Решение №3537: \( x_{n}=\left ( -1 \right )^{n}, y_{n}=\left ( -1 \right )^{n}n\)

Ответ: NaN

Докажите, что из существования пределов\( \lim_{n \to \propto} \left ( \frac{x_{n}}{y_{n}} \right )\) и \(\lim_{n \to \propto} y_{n} \)следует существование \(\lim_{n \to \propto} x_{n}\)

Решение №3539: \( \lim_{n \to \propto} \frac{x_{n}}{y_{n}}*\lim n \to \propto y_{n}=\lim_{n \to \propto} \frac{x_{n}*y_{n}}{y_{n}}=\lim_{n \to \propto} x_{n} \)

Ответ: NaN

Приведите примеры расходящихся последовательностей \(\left \{ x_{n} \right \} \)и \(\left \{ y_{n} \right \}\), для которых сходится последовательность \(\left \{ x_{n}+y_{n} \right \} \)

Решение №3540: \( x_{n}=n+1, y_{n}=-n \)

Ответ: NaN

Известно, что \(\forall n\in N x_{n}\neq 1\) и \(\lim_{n \to \propto} x_{n}=1\). Найдите \(\lim_{n \to \propto} y_{n}\), если: \(y_{n}=\frac{x_{n}-1}{x_{n}^{2}-1}\)

Решение №3548: \(\frac{1}{3}; -1\)

Ответ: NaN

Найдите \(\lim n_{\to \propto} x_{n}\), если \(x_{n}=\frac{3+0.5^{n}}{0.3^{n}+5}\)

Решение №3552: \( \lim_{n \to \propto} \frac{3^{n}}{5+3^{n+1}}=\lim_{n \to \propto} \frac{1}{5\left ( \frac{1}{3} \right )^{n}+3}=\frac{1}{3} \)

Ответ: \frac{1}{3}

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}=\frac{2-n}{n+1}+\frac{n*2^{-n}}{n+2}\)

Решение №3554: \( -\frac{15}{2} \)

Ответ: -\frac{15}{2}

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}=\frac{\sqrt{n^{2}+1}-\sqrt{n^{2}-1}}{\sqrt{n^{2}+n}-n-1})

Пока решения данной задачи,увы,нет...

Ответ: 0

Найдите\( \lim_{n \to \propto} x_{n}\), если \(x_{n}=\sqrt[3]{n^{3}+2n^{2}}-n\)

Решение №3568: \( \lim_{n \to \propto} \left ( \sqrt[3]{n^{3}+2n^{2}-n} \right )=\lim_{ n \to \propto} \frac{n^{3}+2n^{2}-n^{3}}{\sqrt[3]{\left ( n^{3}+2n^{2} \right )^{2}}+\sqrt[3]{n^{6}+2n^{5}}+n^{2}}=\lim_{n \to \propto} \frac{2n^{2}}{n^{2}\left ( \sqrt[3]{\left ( 1+\frac{2}{n} \right )^{2}}+\sqrt[3]{1+\frac{2}{n}}+1 \right )}=\frac{2}{3} \)

Ответ: \frac{2}{3}

Найдите \(\lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\sqrt[n]{2^{n}-n^{2}} \)

Решение №3575: При n> 7 верно неравенство (доказываемое по индукции)\(2^{n-1}\leqslant 2^{n}-n^{2}< 2^{n}-n^{2}< 2^{n}\Leftrightarrow \sqrt[n]{2^{n-1}}\leqslant \sqrt[n]{2^{n}-n^{2}}< \sqrt[n]{2^{n}}, \lim_{n \to \propto} \sqrt[n]{2^{n-1}}=\lim_{n \to \propto}\sqrt[n]{2^{n}}=2. \)

Ответ: 2

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}= \frac{\sqrt[3]{n}-\sqrt[3]{n+1}}{\sqrt[4]{n+1}+\sqrt[4]{n}}\)

Решение №3606: \( \lim_{n \to \propto}\frac{\sqrt[3]{n}-\sqrt[3]{n+1}}{\sqrt[4]{n+1}+\sqrt[4]{n}}=\lim_{n \to \propto}\frac{\left ( n-n-1 \right )\left ( \sqrt[4]{n+1}-\sqrt[4]{n} \right )\left ( \sqrt{n+1}+\sqrt{n} \right )}{\left ( \sqrt[3]{n^{2}}+\sqrt[3]{n^{2}+n}+\sqrt[3]{\left ( n+1 \right )^{2}} \right )\left ( n+1-n \right )}=\lim_{n \to \propto}\frac{-n^{\frac{1}{4}}\left ( \sqrt[4]{1+\frac{1}{n}}-1 \right )n^{\frac{1}{2}}\left ( \sqrt{1+\frac{1}{n}}+\sqrt{1} \right ) }{n\frac{2}{3}\left ( \sqrt[3]{1}+\sqrt[3]{1+\frac{1}{n}}+\sqrt[3]{1+\frac{2}{n}+\frac{1}{n^{2}}} \right )}=0\)

Ответ: 0

При каких значениях параметра a последовательность \(x_{n}=\sqrt{an^{2}+bn+2}-n, n\in N\), имеет конечный предел?

Решение №3607: 1) Если \(a\neq 0, то \lim_{n \to \propto}\sqrt{an^{2}+bn+2}-n=\lim n \to \propto\frac{an^{2}+bn+2-n^{2}}{\sqrt{an^{2}+bn+2}+n}=\lim_{n \to \propto}\frac{\left ( a-1 \right )n^{2}+bn+2}{n\left ( \sqrt{a+\frac{b}{n}+\frac{2}{n^{2}}+1} \right )}=A\) Ясно, что если \(a=1\), то \(A=\frac{b}{2}\), еcли \(a> 1\), то \(A=+\propto \), и если \(a< 1, A=-\propto\) .Тогда \(\lim_{n \to \propto} x_{n}=1 при b=2\) 2) Если a=0. Тогда при всех значениях b имеем \(\lim_{n \to \propto}\left ( \sqrt{bn+2}-n \right )=-\propto \)

Ответ: 1

Пусть \(\lim_{n \to \propto} a_{n}=a, a> 0\). Докажите, что \(\lim_{n \to \propto}\sqrt[n]{a_{n}}=1 \)

Решение №3610: \( \lim_{n \to \propto} \sqrt[n]{a}=1\) при a> 0. Пусть \(\lim_{n \to \propto} \sqrt[n]{a}=A> 0\). Из определения предела следует, что, начиная с некоторого n,выполнено неравенство \(\frac{A}{2}< a_{n}< \frac{3A}{2}, откуда \sqrt[n]{\frac{A}{2}}< \sqrt[n]{a_{n}}< \sqrt[n]{\frac{3A}{2}}\). По теореме о сжатой последовательности получаем \(\lim_{n \to \propto} \sqrt[n]{a}=1 .\)

Ответ: NaN

Приведите пример сходящейся неотрицательной последовательности \(\left \{ a_{n} \right \}\), для которой последовательность\(\left \{ \sqrt[n]{a_{n}} \right \}\) расходится.

Решение №3611: \(x_{n}=\left\{\begin{matrix}\left ( \frac{1}{2} \right )_{n}, n=2k \\ \left ( \frac{1}{3} \right )^{n}, n=2k-1 \end{matrix}\right. \)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Найдите (угадайте), к какому числу сходится поледовательность, и докажите, что это число действительно предел последовательности по определению: \(x_{n}=\frac{\sin n}{n} \)

Решение №7370: Докажем, что \(\lim n \to \frac{\sin n}{n}=0\). Заметим, что \(\left | \frac{\sin n}{n} \right |\leqslant \frac{1}{n}\). Тогда, взяв \(N_{\varepsilon }=\left [ \frac{1}{\varepsilon } \right ]+1\), получим, что неравенство \(\left | \frac{\sin n}{n} \right |< \varepsilon выполнено для всех n> N_{\varepsilon } \)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Приведите пример последовательности \(\left \{ x_{n} \right \}\), удовлетворяющей условию \(\forall \varepsilon > 0 \exists k\in N: \forall n\geqslant k x_{n}< \varepsilon\) и такой что: а) она не имеет предела; б) она имеет предел. Может ли этот предел быть равным 1? Найдите множество возможных пределов последовательности \(\left \{ x_{n} \right \}. \)

Решение №7377: а) \(x_{n}=-n б) x_{n}=0\). Предел не может быть равен 1. Множеством взможных пределов последовательноти \(\left \{ x_{n} \right \} \)является луч \(\left ( -\propto ;0 \right ]\). 1) Допустим, что предел последовательности \(\left \{ x_{n} \right \}\) равен 1, тогда \(\forall \varepsilon > 0 \exists k\in N: \forall n\geqslant k 1-\varepsilon < x_{n}< \varepsilon +1\). В силу произвольного выбор \(\varepsilon\) возьмем \(\varepsilon _{1}=1-\varepsilon > 0\) и тогда, начиная с некоторого нормера, \(x_{n}> \varepsilon _{1}\). Получили противоречие, значит,наше предположение было неверным. 2) Действительно, любое неположительное число a является пределом последовательности, каждый член которой равен a, удовлетворяющей условию задачи. Кроме того, рассуждение, повторяющее пункт 1 с заменой 1 на произвольное положительное число, показывает, что никакое положительное число не может быть пределом последовательности, удовлетворяющей условию задачи.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Пусть последовательность \(\left \{ a_{n} \right \}\) положительных чисел такова, что последовательность \(\left \{ n^{2}*a_{n}*a_{n+1} \right \}\) сходитcя. Какие из последовательностей обязательно сходятся (если необязательно сходятся, приведите примеры, если обязательно сходятся, приведите доказательство) \(\left \{ n^{2}*a_{n}*a_{n+3} \right \}\)

Решение №7380: Пусть \(\left \{ a_{n} \right \}\)- последовательность вида 0; 0; 1; 0; 0; 1; 0; 0; 1; ... . Тогда последовательность \(\left \{ n^{2}a_{n}a_{n+1} \right \}\) состоит из одних нулей и сходится, а последовательноть \(\left \{ n^{2}a_{n}a_{n+3} \right \}\) будет иметь вид 0; 0; 9; 0; 0; 36; ... ,т.е. расходится.

Ответ: Необязательно сходится