№3606
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}= \frac{\sqrt[3]{n}-\sqrt[3]{n+1}}{\sqrt[4]{n+1}+\sqrt[4]{n}}\)
Ответ
0
Решение № 3606:
\( \lim_{n \to \propto}\frac{\sqrt[3]{n}-\sqrt[3]{n+1}}{\sqrt[4]{n+1}+\sqrt[4]{n}}=\lim_{n \to \propto}\frac{\left ( n-n-1 \right )\left ( \sqrt[4]{n+1}-\sqrt[4]{n} \right )\left ( \sqrt{n+1}+\sqrt{n} \right )}{\left ( \sqrt[3]{n^{2}}+\sqrt[3]{n^{2}+n}+\sqrt[3]{\left ( n+1 \right )^{2}} \right )\left ( n+1-n \right )}=\lim_{n \to \propto}\frac{-n^{\frac{1}{4}}\left ( \sqrt[4]{1+\frac{1}{n}}-1 \right )n^{\frac{1}{2}}\left ( \sqrt{1+\frac{1}{n}}+\sqrt{1} \right ) }{n\frac{2}{3}\left ( \sqrt[3]{1}+\sqrt[3]{1+\frac{1}{n}}+\sqrt[3]{1+\frac{2}{n}+\frac{1}{n^{2}}} \right )}=0\)