Задача №3611

№3611

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 4

Задача встречается в следующей книге:

Условие

Приведите пример сходящейся неотрицательной последовательности \(\left \{ a_{n} \right \}\), для которой последовательность\(\left \{ \sqrt[n]{a_{n}} \right \}\) расходится.

Ответ

NaN

Решение № 3611:

\(x_{n}=\left\{\begin{matrix}\left ( \frac{1}{2} \right )_{n}, n=2k \\ \left ( \frac{1}{3} \right )^{n}, n=2k-1 \end{matrix}\right. \)

Поделиться в социальных сетях

Комментарии (0)