Задача №3610

№3610

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 4

Задача встречается в следующей книге:

Условие

Пусть \(\lim_{n \to \propto} a_{n}=a, a> 0\). Докажите, что \(\lim_{n \to \propto}\sqrt[n]{a_{n}}=1 \)

Ответ

NaN

Решение № 3610:

\( \lim_{n \to \propto} \sqrt[n]{a}=1\) при a> 0. Пусть \(\lim_{n \to \propto} \sqrt[n]{a}=A> 0\). Из определения предела следует, что, начиная с некоторого n,выполнено неравенство \(\frac{A}{2}< a_{n}< \frac{3A}{2}, откуда \sqrt[n]{\frac{A}{2}}< \sqrt[n]{a_{n}}< \sqrt[n]{\frac{3A}{2}}\). По теореме о сжатой последовательности получаем \(\lim_{n \to \propto} \sqrt[n]{a}=1 .\)

Поделиться в социальных сетях

Комментарии (0)