Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3509: Например поледовательность с общим членом \(x_{n}=1. \)
Ответ: Нет
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3513: \( x_{n}=\frac{1}{2n+1}; y_{n}=n. \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3515: \( x_{n}=\frac{\left ( -1 \right )^{n}}{n}; y_{n}=n. \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3517: \( x_{n}=n-1; y_{n}=n+1\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3519: \( x_{n}=\left ( -1 \right )^{n}; y_{n}=n \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3528: Нет, например \(x_{n}=-n y_{n}=0\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3529: Нет, например \(x_{n}=\left ( -1 \right )^{n}n y_{n}=\left ( -1 \right )^{n+1}n. Тогда \lim_{n \to \propto} \left ( x_{n}+y_{n} \right )=0 \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3534: \(x_{n}=\frac{\left ( -1 \right )^{n}}{n}, y_{n}=\frac{1}{n} \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3536: Нет, например \(x_{n}=\left\{\begin{matrix}n, n=2k \\ \frac{1}{n^{2}}, n=2k-1 \end{matrix}\right. y_{n}=\left\{\begin{matrix}\frac{1}{n^{2}}, n=2k \\ n, n=2k-1 \end{matrix}\right.\) Тогда \(x_{n}y_{n}=\frac{1}{n}\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3537: \( x_{n}=\left ( -1 \right )^{n}, y_{n}=\left ( -1 \right )^{n}n\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3539: \( \lim_{n \to \propto} \frac{x_{n}}{y_{n}}*\lim n \to \propto y_{n}=\lim_{n \to \propto} \frac{x_{n}*y_{n}}{y_{n}}=\lim_{n \to \propto} x_{n} \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3540: \( x_{n}=n+1, y_{n}=-n \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3548: \(\frac{1}{3}; -1\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3552: \( \lim_{n \to \propto} \frac{3^{n}}{5+3^{n+1}}=\lim_{n \to \propto} \frac{1}{5\left ( \frac{1}{3} \right )^{n}+3}=\frac{1}{3} \)
Ответ: \frac{1}{3}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3553: 27
Ответ: 27
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3554: \( -\frac{15}{2} \)
Ответ: -\frac{15}{2}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: 0
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3568: \( \lim_{n \to \propto} \left ( \sqrt[3]{n^{3}+2n^{2}-n} \right )=\lim_{ n \to \propto} \frac{n^{3}+2n^{2}-n^{3}}{\sqrt[3]{\left ( n^{3}+2n^{2} \right )^{2}}+\sqrt[3]{n^{6}+2n^{5}}+n^{2}}=\lim_{n \to \propto} \frac{2n^{2}}{n^{2}\left ( \sqrt[3]{\left ( 1+\frac{2}{n} \right )^{2}}+\sqrt[3]{1+\frac{2}{n}}+1 \right )}=\frac{2}{3} \)
Ответ: \frac{2}{3}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3575: При n> 7 верно неравенство (доказываемое по индукции)\(2^{n-1}\leqslant 2^{n}-n^{2}< 2^{n}-n^{2}< 2^{n}\Leftrightarrow \sqrt[n]{2^{n-1}}\leqslant \sqrt[n]{2^{n}-n^{2}}< \sqrt[n]{2^{n}}, \lim_{n \to \propto} \sqrt[n]{2^{n-1}}=\lim_{n \to \propto}\sqrt[n]{2^{n}}=2. \)
Ответ: 2
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3584: Найдем искомый предел из уравнения \(A^{k}=5A\) ( так как \(x_{n+1}^{k}=5x_{n}\)). Откуда A=0 или \(A=\sqrt[k-1]{5}\). Так как последовательность \(\left \{ x_{n} \right \} \) возрастает и \(x_{1}=\sqrt[k]{5}> 1,то A=\sqrt[k-1]{5}\). Докажем возрастание и ограниченность последовательности \(\left \{ x_{n} \right \}\) по индукции. Так как \(x_{n+1}< x_{n}\) по индукционному предположению , \(то x_{n}=\sqrt[k]{5x_{n-1}}< \sqrt[k]{5x_{n}}=x_{n+1}\). Кроме того, \(x_{n+1}=\sqrt[k]{5x_{n}}< \sqrt[k]{5A}=A. \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Решение №3589: \( x_{1}\leqslant x_{2}=f\left ( x_{1} \right ) \leqslant f\left ( x_{2} \right )=x_{3}\leqslant ...\leqslant x_{n}=f\left ( x_{n-1} \right )\leqslant f\left ( x_{n} \right )=x_{n+1} \) в силу возрастания функции f. Тогда последовательность \(\left \{ x_{n} \right \} \)- возрастающая (не строго).
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: Да
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Решение №3606: \( \lim_{n \to \propto}\frac{\sqrt[3]{n}-\sqrt[3]{n+1}}{\sqrt[4]{n+1}+\sqrt[4]{n}}=\lim_{n \to \propto}\frac{\left ( n-n-1 \right )\left ( \sqrt[4]{n+1}-\sqrt[4]{n} \right )\left ( \sqrt{n+1}+\sqrt{n} \right )}{\left ( \sqrt[3]{n^{2}}+\sqrt[3]{n^{2}+n}+\sqrt[3]{\left ( n+1 \right )^{2}} \right )\left ( n+1-n \right )}=\lim_{n \to \propto}\frac{-n^{\frac{1}{4}}\left ( \sqrt[4]{1+\frac{1}{n}}-1 \right )n^{\frac{1}{2}}\left ( \sqrt{1+\frac{1}{n}}+\sqrt{1} \right ) }{n\frac{2}{3}\left ( \sqrt[3]{1}+\sqrt[3]{1+\frac{1}{n}}+\sqrt[3]{1+\frac{2}{n}+\frac{1}{n^{2}}} \right )}=0\)
Ответ: 0
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Решение №3607: 1) Если \(a\neq 0, то \lim_{n \to \propto}\sqrt{an^{2}+bn+2}-n=\lim n \to \propto\frac{an^{2}+bn+2-n^{2}}{\sqrt{an^{2}+bn+2}+n}=\lim_{n \to \propto}\frac{\left ( a-1 \right )n^{2}+bn+2}{n\left ( \sqrt{a+\frac{b}{n}+\frac{2}{n^{2}}+1} \right )}=A\) Ясно, что если \(a=1\), то \(A=\frac{b}{2}\), еcли \(a> 1\), то \(A=+\propto \), и если \(a< 1, A=-\propto\) .Тогда \(\lim_{n \to \propto} x_{n}=1 при b=2\) 2) Если a=0. Тогда при всех значениях b имеем \(\lim_{n \to \propto}\left ( \sqrt{bn+2}-n \right )=-\propto \)
Ответ: 1
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Решение №3610: \( \lim_{n \to \propto} \sqrt[n]{a}=1\) при a> 0. Пусть \(\lim_{n \to \propto} \sqrt[n]{a}=A> 0\). Из определения предела следует, что, начиная с некоторого n,выполнено неравенство \(\frac{A}{2}< a_{n}< \frac{3A}{2}, откуда \sqrt[n]{\frac{A}{2}}< \sqrt[n]{a_{n}}< \sqrt[n]{\frac{3A}{2}}\). По теореме о сжатой последовательности получаем \(\lim_{n \to \propto} \sqrt[n]{a}=1 .\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Решение №3611: \(x_{n}=\left\{\begin{matrix}\left ( \frac{1}{2} \right )_{n}, n=2k \\ \left ( \frac{1}{3} \right )^{n}, n=2k-1 \end{matrix}\right. \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Решение №3621: Так как \(\forall n\in N x_{n+1}-x=\frac{1}{\left ( n+1 \right )^{n+1}}> 0\), то последовательность \(\left \{ x_{n} \right \}\) возрастает. Кроме того \(\forall n\in N x_{n}< 1+\frac{1}{2^{2}}+\frac{1}{2^{3}}+...+\frac{1}{2^{n}}=\frac{1}{2}+\left ( \frac{1}{2}+\frac{1}{2^{2}}+...+\frac{1}{2^{n}} \right )< \frac{3}{2}\). То есть последовательность \(\left \{ x_{n} \right \}\) ограничена сверху.
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Пока решения данной задачи,увы,нет...
Ответ: x_{1}\in \left [ -\frac{1}{2};\frac{1}{2} \right ]
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Решение №3629: Выпишем несколько первых членов последовательности: \(x_{1}=-3; x_{2}=-1; x_{3}=-5; x_{4}=-\frac{1}{5}; x_{5}=-29; x_{6}=\frac{23}{29}; x_{7}=1+\frac{6*29}{23}\). Таким образом, процесс переходит в первую четверть \(\left ( x_{k}> 0 \right )\), а сначала хотелось сказать, что он расходится. Далее получим, что \(\forall n\geqslant 6\left ( x_{n}> 0 \right ) \)последовательность \(\left \{ x_{2n} \right \} \)возрастающая и ограничена сверху, а последовательность \(\left \{ x_{2n+1} \right \}\) убывающая и ограничена снизу \(\left ( n\geqslant 3 \right ), \lim_{n \to \propto} x_{n}=3. \)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Решение №3631: Как обычно, мешает разрыв. Было бы хорошо сказать, что функция возрастает и последовательность \(\left \{ x_{n} \right \}\) возрастает. Но всё не так: \(x_{2}=\frac{1}{2}; x_{3}=-2; x_{4}=\frac{11}{2}; x_{5}=3\frac{5}{11}; x_{6}=3\frac{5}{38}\). При \(n\leqslant 4\) последовательность \(\left \{ x_{n} \right \}\) убывает. Значение ппредела получается из уравнения \(a=4-\frac{3}{a}\Leftrightarrow \left [ \begin{matrix}a-3 \\ a=1 \end{matrix} \right \) Но \(\lim_{n \to \propto} x_{n} =3 \), и это, вообще говоря, надо доказать.
Ответ: NaN