№3629
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Исследуйте на сходимость последовательность\( x_{1}=-3, x_{n+1}=1+\frac{6}{x_{n}} \)
Ответ
NaN
Решение № 3629:
Выпишем несколько первых членов последовательности: \(x_{1}=-3; x_{2}=-1; x_{3}=-5; x_{4}=-\frac{1}{5}; x_{5}=-29; x_{6}=\frac{23}{29}; x_{7}=1+\frac{6*29}{23}\). Таким образом, процесс переходит в первую четверть \(\left ( x_{k}> 0 \right )\), а сначала хотелось сказать, что он расходится. Далее получим, что \(\forall n\geqslant 6\left ( x_{n}> 0 \right ) \)последовательность \(\left \{ x_{2n} \right \} \)возрастающая и ограничена сверху, а последовательность \(\left \{ x_{2n+1} \right \}\) убывающая и ограничена снизу \(\left ( n\geqslant 3 \right ), \lim_{n \to \propto} x_{n}=3. \)