Задача №3584

№3584

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Докажите, что \(\left \{ x_{n} \right \}\) сходится, и найдите \(\lim_{n \to \propto} x_{n} : x_{1}=\sqrt[k]{5}, x_{n+1}=\sqrt[k]{5x_{n}}, где k\in N\)

Ответ

NaN

Решение № 3584:

Найдем искомый предел из уравнения \(A^{k}=5A\) ( так как \(x_{n+1}^{k}=5x_{n}\)). Откуда A=0 или \(A=\sqrt[k-1]{5}\). Так как последовательность \(\left \{ x_{n} \right \} \) возрастает и \(x_{1}=\sqrt[k]{5}> 1,то A=\sqrt[k-1]{5}\). Докажем возрастание и ограниченность последовательности \(\left \{ x_{n} \right \}\) по индукции. Так как \(x_{n+1}< x_{n}\) по индукционному предположению , \(то x_{n}=\sqrt[k]{5x_{n-1}}< \sqrt[k]{5x_{n}}=x_{n+1}\). Кроме того, \(x_{n+1}=\sqrt[k]{5x_{n}}< \sqrt[k]{5A}=A. \)

Поделиться в социальных сетях

Комментарии (0)