Задача №3509

№3509

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Верно ли, что \(\lim_{n \to \propto} x_{n}=+\propto\), если все члены последовательноти \(\left \{ x_{n} \right \}\) - натуральные числа?

Ответ

Нет

Решение № 3509:

Например поледовательность с общим членом \(x_{n}=1. \)

Поделиться в социальных сетях

Комментарии (0)