Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Число 26 представить в виде суммы трех положительных слагаемых так, чтобы сумма их квадратов была наименьшей, если известно, что второе слагаемое больше первого в 3 раза

Пока решения данной задачи,увы,нет...

Ответ: {4;10;12}

Из городов \(A\) и \(B\) одновременно навстречу друг другу выезжает велосипедист и выходит пешеход. Скорость велосипедиста 25 км/ч, скорость пешехода \(x\) км/ч. После встречи они поворачивают назад и возвращаются каждый в свой город, причем велосипедист при этом движется с прежней скоростью, а пешеход увеличивает свою скорость на 1 км/ч. Найти время нахождения в пути пешехода, если расстояние между городами \(s\) км. При каком значении \(х\) это время будет наибольшим?

Пока решения данной задачи,увы,нет...

Ответ: \(t=\frac{s(2x+1)}{(25+x)(x+1)}\); \(x_{max}=3\)

Из пункта \(A\) со скоростью \(v\) (км/ч) на прогулку вышел пешеход. Когда он отошел от \(A\) на 6 км, из \(A\) следом за ним выехал велосипедист, скорость которого была на 9 км/ч больше скорости пешехода. Велосипедист догнал пешехода, они повернули назад и вместе возвратились в \(A\) со скорость 4 км/ч. При каком значении \(v\) время прогулки пешехода окажется наименьшим?

Пока решения данной задачи,увы,нет...

Ответ: 6

Найти точку графика функции \(y=x^{2}+\frac{1}{2}\), ближайшую к точке \(A\left ( \frac{1}{4};1 \right )\)

Пока решения данной задачи,увы,нет...

Ответ: <0,5;0,75>

Найти наименьшее расстояние от точки\(M (2;0)\) до точек графика функции \(y=\frac{\sqrt{2}}{\sqrt{27(x-2)}}\). Ответ умножить на \(\sqrt{3}\)

Пока решения данной задачи,увы,нет...

Ответ: 1

На координатной плоскости рассматривается прямоугольник \(ABCD\), у которого сторона \(AB\) лежит на оси координат, вершина \(C\) на параболе \(y=x^{2}-4x+3\), а вершина \(D\) - на параболе \(y=-x^{2}+2x-2\). При этом абсцисса вершины \(D\) принадлежит отрезку \(\left [ \frac{4}{5};\frac{3}{2} \right ]\). Какое значение должна иметь абсцисса вершины \(D\), чтобы площадь прямоугольника \(ABCD\) была наименьшей?

Пока решения данной задачи,увы,нет...

Ответ: 0.8

Автомобиль движется из пункта \(A\) в пункт \(С\). От пункта \(A\) до пункта \(Б\), расположенного между \(A\) и \(С\), он идет со скоростью 48 км/ч. В пункте \(Б\) он уменьшает скорость на \(a\) (км/ч) \((0< a< 48)\) и с этой скоростью проезжает третью часть пути от \(Б\) до \(С\). Оставшуюся часть пути он едет со скоростью, которая на \(2a\) (км/ч) превышает начальную скорость. При каком значении \(a\) автомобиль быстрее всего пройдет путь от \(Б\) до \(С\)?

Пока решения данной задачи,увы,нет...

Ответ: 12

По двум улицам к перекрестку движутся два автомобиля с постоянными скоростями \(v_{1}=40\) км/ч и \(v_{2}=50\) км/ч. Известно, что в некоторый момент времени автомобили находятся от перекрестка на расстоянии \(s_{1}=2\) км и \(s_{2}=3\) км соответственно. Считая, что улицы пересекаются под прямым углом, определить, через какое время расстояние между автомобилями станет наименьшим.

Пока решения данной задачи,увы,нет...

Ответ: 23/410

Расстояние между населенными пунктами \(A\) и \(Б\) составляет 36 км. Из \(A\) и \(Б\) идет пешеход со скоростью 6 км/ч. Одновременно из \(Б\) в сторону \(A\) выезжает велосипедист со скоростью \(v\) км/ч, причем \(v\in [10;15]\). После встречи с пешеходом велосипедист еще 20 мин ехал в сторону \(A\), затем повернул и возвратился в \(Б\) . Найти минимальную и максимальную разницу во времени прибытия в \(Б\) пешехода и велосипедиста.

Пока решения данной задачи,увы,нет...

Ответ: {5/6;40/21}

Стоимость эксплуатации катера, плывущего со скоростью \(v\) км/ч, составляет \((90+0,4v^{2})\) руб. за 1ч. С какой скоростью должен плыть катер, чтобы стоимость прохода 1 км пути была наименьшей?

Пока решения данной задачи,увы,нет...

Ответ: 15

Точка \(А\) лежит на графике функции \(y=x^{2}-2x\), а точка \(B\) - на графике функции \(y=-x^{2}+14x-50\). Чему равно наименьшее значение длины отрезка \(АB\)?

Пока решения данной задачи,увы,нет...

Ответ: 2\sqrt{5}

К графику функции \(y=\frac{1}{x^{2}}\) в точке, абсцисса \(\alpha \) которой принадлежит отрезку \([5;9]\) проведена касательная.Какова наибольшая площадь \(S\) треугольника, ограниченного этой касательной, осью абсцисс и прямой \( x=4\), является наибольшей?

Пока решения данной задачи,увы,нет...

Ответ: 0.125

Представить число 18 в виде суммы двух положительных слагаемых так, чтобы сумма удвоенного куба одного из них и удевятеренного квадрата другого была наименьшей

Пока решения данной задачи,увы,нет...

Ответ: {6;12}

Число 18 представить в виде суммы двух положительных слагаемых так, чтобы сумма их квадратов была наименьшей

Пока решения данной задачи,увы,нет...

Ответ: {9;9}

Число 36 представить в виде произведения двух сомножителей так, чтобы сумма их квадратов была наименьшей

Пока решения данной задачи,увы,нет...

Ответ: 6*6

Турист идет из пункта \(A\), находящегося на шоссе, в пункт \(Б\), расположенный в 8 км от шоссе. Расстояние от \(A\) до \(Б\) по прямой равно 17 км. На каком расстоянии от \(A\) туристу следует свернуть с шоссе, чтобы в кратчайшее время прийти в пункт \(Б\), если скорость туриста по шоссе равна 5 км/ч, а по бездорожью 3 км/ч?

Пока решения данной задачи,увы,нет...

Ответ: В 9 км от \(А\)

Одна и та же резина на передних колесах автомобиля выходит из строя через 24000 км пробега, а задних - через 36000 км. Каково максимальное расстояние, которое автомобиль может пройти на этой резине, если передние и задние колеса можно менять местами?

Пока решения данной задачи,увы,нет...

Ответ: 28800

Точка \(M\) лежит на прямой \(y=1-x\), а точка \(N\) - на параболе \(y=x^{2}-5x+6\). Чему равно наименьшее значение длины отрезка \(MN\)? Ответ умножить на \(\frac{1}{\sqrt{2}}\)

Пока решения данной задачи,увы,нет...

Ответ: 0.5

Точка \(А\) лежит на графике функции \(y=\frac{1}{8}(x^{2}-12x)\), а точка \(B\) - на кривой \(x^{2}+y^{2}-18x-12y+97=0\). Чему равно наименьшее значение длины отрезка \(АB\)?

Пока решения данной задачи,увы,нет...

Ответ: \frac{\sqrt{5}}{2}

На координатной плоскости заданы точки \(M(3;0)\) и \(N(5;2)\). При каких значениях \(a\) точка \(M\) среди всех точек отрезка \([M,N]\) является ближайшей к графику функции \(y=ax^{2}\)?

Пока решения данной задачи,увы,нет...

Ответ: (-\infty ;0]\cup \left [ \frac{1}{4};+\infty \right )

К графику функции \(y=\frac{1}{x^{2}}\) в точке, абсцисса \(\alpha \) которой принадлежит отрезку \([5;9]\) проведена касательная. При каком значении \(\alpha \) площадь \(S\) треугольника, ограниченного этой касательной, осью абсцисс и прямой \( x=4\), является наибольшей?

Пока решения данной задачи,увы,нет...

Ответ: 8

На координатной плоскости рассматривается треугольник \(ABC\), у которого вершина \(A\) совпадает с началом координат, вершина \(B\) лежит на параболе \(y=3x^{2}-10x+2\), а вершина \(С\) - на параболе \(y=-2x^{2}+5x-10\). При этом сторона \(BC\) треугольника параллельна оси ординат, а абсцисса вершины \(B\) принадлежит отрезку \(\left [ \frac{3}{5};\frac{3}{2} \right ]\). Какое значение должна иметь абсцисса вершины \(B\), чтобы площадь треугольника \(ABC\) была наибольшей?

Пока решения данной задачи,увы,нет...

Ответ: 0.6

Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на кредиты

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, задачи на проценты, задачи на кредиты,

Задача в следующих классах: 6 класс 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Предприниматель обратился в банк с просьбой о предоставлении ссуды в размере 1000000 рублей сроком на 1 год. Банк выделил ему эту ссуду с годовой процентной ставкой 20% при условии погашения ссуды одним платежом в конце срока. Какую сумму должен через год возвратить предприниматель банку? Какие процентные деньги получит банк?

Решение №35614: Через год предприниматель должен вернуть банку \(1000000\cdot 1,2=1200000\) (рублей), банк на этом заработает \(1200000-1000000=200000\) (рублей). Ответ: 1 200 000 рублей; 200 000 рублей.

Ответ: 1200000; 200000

Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на кредиты

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, задачи на проценты, задачи на кредиты,

Задача в следующих классах: 6 класс 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Клиент взял в банке кредит 18 000 рублей на год под 14%. Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, с тем чтобы через год выплатить всю сумму, взятую в кредит, вместе о процентами. Сколько рублей он должен вносить в банк ежемесячно?

Решение №35615: Клиент будет вносить ежемесячно \(\frac{18000\cdot 1,14}{12}=\frac{20520}{12}=1710\) (рублей). Ответ: 1710 рублей

Ответ: 1710

Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на кредиты

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, задачи на проценты, задачи на кредиты,

Задача в следующих классах: 6 класс 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

В июле 2017 года был взят кредит в банке на три года в размере \(S\) млн рублей, где \(S\) — целое число. Условия его возврата таковы: каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; — в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей (см. рис. ниже). Найдите наименьшее значение \(S\), при котором каждая из выплат будет больше 3 млн рублей.

Решение №35616: Пусть \(S\) — сумма кредита; \(x_{1}\), \(x_{2}\), \(x_{3}\) — выплаты с февраля по нюнь каждого года. Начисление 25% соответствует умножению на коэффициент \(1+\frac{25}{100}=1,25\). Составим уравнения, которые соответствуют рафику погашения кредита: 2018 г.: \(1,25S-x_{1}=0,7S\), 2019 г.: \(1,25\cdot 0,7S-x_{2}=0,4S\), 2020 г.: \(1,25\cdot 0,4S-x_{3}=0\). Таким образом, выплаты с февраля по июнь каждого года составляют \(x_{1}=0,55S\); \(x_{2}=0,475S\); \(x_{3}=0,5S\). Наименьшая из выплат должна быть больше 3 млн рублей: \(0,475S>3\), \(S>3\cdot \frac{1000}{475}\), \(S>3\cdot \frac{40}{19}\), \(S>6\frac{6}{19}\). Наименьшим целым числом, удовлетворяющим последнему неравенству, является \(S=7\). Ответ: 7.

Ответ: 7

Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на кредиты

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, задачи на проценты, задачи на кредиты,

Задача в следующих классах: 6 класс 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

15 мая был выдан кредит на развитие бизнеса. В таблице представлен график его погашения. Текущий долг выражается в процентах от кредита (см. рис. ниже). В конце каждого месяца, начиная с мая, текущий долг увеличивается на 5%, а выплаты по погашению кредита должны происходить в первой половине каждого месяца, начиная с июня. На сколько процентов общая сумма выплат при таких условиях больше суммы самого кредита?

Решение №35617: Ежемесячная выплата складывается из выплаты части полученного кредита и выплаты процентов за обслуживание кредита, начисленных банком на оставшуюся сумму долга. Общая сумма выплат больше суммы самого кредита на сумму выплаченных процентов за обслуживание кредита. Посчитаем сумму выплаченных процентов. В июне предприниматель выплатит \(100% \cdot 0,05\) от кредита, в июле — \(80%\cdot 0,05\) от кредита, в августе — \(60%\cdot 0,05\) от кредита, в сентябре — \(40%\cdot 0,05\) от кредита, в октябре — \(20%\cdot 0,05\) от кредита. Всего предприниматель за обслуживание кредита выплатит \(0,05\cdot 100%+0,05\cdot 80%+... +0,05\cdot 20%=0,05(100%+80%+60%+40%+20%)=0,05\cdot 300%=15%. Ответ: 15.

Ответ: 15

Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на кредиты

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, задачи на проценты, задачи на кредиты,

Задача в следующих классах: 6 класс 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

В июле 2017 года был взят кредит в банке в размере \(S\) тыс. рублей, где \(S\) — натуральное число, на 3 года. Условия его возврата таковы: - каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года; - с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей (см. рис. ниже). Найдите наименьшее значение \(S\), при котором каждая из выплат будет составлять целое число тысяч рублей.

Решение №35618: Долг перед банком (в тыс. рублей) по состоянию на июль клждого года должен уменьшаться до нуля следующим образом: \(S\); \(0,75S\); \(0,3S\); 0. По условию в январе каждого года долг увеличивается на 20%, значит, долг в январе каждого года равен \(1,2S\); \(0,84S\); \(0,36S\). Следовательно, выплаты с февраля по июнь каждого года составляют: \(0,45S\); \(0,54S\); \(0,36S\). По условию числа \(S\); \(\frac{9S}{20}\); \(\frac{27S}{50}\); \(\frac{9S}{25}\) должны быть целыми. Значит, число \(S\) должно делиться на 20, 50 и 25. Наименьшее общее кратное этих чисел равно 100. Ответ: 100 тысяч рублей.

Ответ: 100000

Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на кредиты

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, задачи на проценты, задачи на кредиты,

Задача в следующих классах: 6 класс 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Величина предоставленного потребительского кредита — 12000 руб. Процентная ставка — 12% годовых, срок погашения — 6 месяцев, схема погашения — регрессивная (то есть в конце каждого месяца заёмщик выплачивает процент на оставшуюся часть долга и одну шестую часть основного долга). Какую сумму выплатит заёмщик в итоге банку?

Решение №35619: Задачу можно решить с помощью таблицы. В графе «Долг» указан долг на начало месяца перед начислением процентов. Процентный платёж 12% годовых означает 1% в месяц и равен 0,01 от суммы долга на начало месяца (см. рис. Ниже). Ответ: 12 420 рублей.

Ответ: 12450

Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на кредиты

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, задачи на проценты, задачи на кредиты,

Задача в следующих классах: 6 класс 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

В июле планируется взять кредит в банке на сумму 10 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: — каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 18 млн рублей?

Решение №35620: Пусть кредит планируется взять на п лет. Долг перед банком (в млн рублей) по состоянию на июль должен уменьшаться до нуля равномерно: \(10, \frac{10(n-1)}{n}, …, \frac{10\cdot 2}{n}, \frac{10}{n}, 0\). По условию каждый январь долг возрастает на 20%, значит, последо-и.тгсльность размеров долга (в млн рублей) в январе такова: \(12, \frac{12(n-1)}{n}, ... , \frac{12\cdot 2}{n}, \frac{12}{n}, 0\). Следовательно, выплаты (в млн рублей) должны быть следующими: \(2+\frac{10}{n}, \frac{2(n-1)+10}{n}, ... , \frac{4+10}{n}, \frac{2+10}{n}\). Всего следует выплатить \(10+2\cdot \left (\frac{n+(n-1)+...+2+1}{n}\right )=10+2\cdot \frac{n+1}{2}=n+11\) (млн рублей). Общая сумма выплат равна 18 млн рублей, поэтому \(n=7\). Ответ: 7.

Ответ: 7

Экзамены с этой задачей: Математика ЕГЭ математика профиль Финансовая математика(С5) Задачи на кредиты

Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, задачи на проценты, задачи на кредиты,

Задача в следующих классах: 6 класс 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

15 января планируется взять кредит в банке на два года. Угловия его возврата таковы: 1-го числа последующего месяца долг возрастает на \(r%\) по сравнению г концом предыдущего месяца; со 2-го по 14-е число месяца необходимо выплатить часть долга; 15-го числа каждого месяца, последующего за месяцем получения кредита, долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит. Найдите \(r\).

Решение №35621: Пусть \(K\) — сумма кредита. Тогда, согласно условию воз-ирата кредита, эта сумма будет ежемесячно уменьшаться на одну и ту же сумму, равную \(\frac{K}{24}\), поэтому на каждое 15-е число, считая от месяца получения кредита, сумма долга составляет: \(K, \frac{23}{24}K, \frac{22}{24}K, ... , \frac{2}{24}K, \frac{1}{24}K, 0\). Выплаты по кредиту со 2-го по 14-е число согласно условию будут, ішчніїая с месяца, следующего за месяцем получения кредита, таковы: \(K\cdot \frac{r}{100}+\frac{K}{24}, \frac{23}{24}K\cdot \frac{r}{100}+\frac{K}{24}, \frac{22}{24}K\cdot \frac{r}{100}+\frac{K}{24}, ... , \frac{2}{24}K\cdot \frac{r}{100}+\frac{K}{24}, \frac{1}{24}K\cdot \frac{r}{100}+\frac{K}{24}\). Сумма всех выплат равна \(K+\frac{K}{24}\cdot \frac{r}{100}\cdot (24+23+22+...+2+1)=K\cdot \left (1+\frac{r}{24\cdot 100}\cdot \frac{25\cdot 24}{2}\right )=K\cdot \left (1+\frac{r}{8}\right )\). В соответствии с условием составим пропорцию: \(K - 100%\); \(K\cdot \left (1+\frac{r}{8}\right - 125%\). Отсюда \(K\cdot 125%=K\cdot \left (1+\frac{r}{8}\right )\cdot 100%\), \(1+\frac{r}{8}=\frac{5}{4}\), \(r=2\). Ответ: 2.

Ответ: 2