№2081
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Постройте график функции: \(y=\frac{x^{2}-4x}{(x-4)^{2}} \cdot \frac{x^{2}-16}{2x}\)
Ответ
NaN
Решение № 2081:
\(y=\frac{x^{2}-4x}{(x-4)^{2}} \cdot \frac{x^{2}-16}{2x}=\frac{x(x-4) \cdot (x-4)(x+4)}{(x-4)^{2}2x}=\frac{x+4}{2}=\frac{x+4}{2}=\frac{x}{2}+2; y=\frac{x}{2}+2; x \neq 0, x \neq 4\)