Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1499: \(\frac{a-5}{a+5}; a+5=0; при a=-5, выражение \frac{a-5}{a+5} не имеет смысла\)
Ответ: -5
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1500: \(\frac{5c}{4+10c}; 4+10c = 0; 10c = -4; c=-4:10; c=-0,4; при c=-0,4, выражение \frac{5c}{4+10c} не имеет смысла\)
Ответ: -0.4
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1501: \(\frac{3x-9}{1+x}; 1+x=0; x=-1; при c=-1, выражение \frac{3x-9}{1+x} не имеет смысла\)
Ответ: -1
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1504: \(\frac{45z^{8}+5}{3z(23z+69)}; 3z=0; z=0 или 23z+69=0; 23z=-69; x=-69:23; z=-3; При z=0; -3 значение выражения не имеет смысла\)
Ответ: \(z=0, -3\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1510: \(\frac{17s+1}{(s-2)(2+s)}; s-2=0; s=2 или 2+s=0; s=-2; При s=2, -2 значение выражения не имеет смысла\)
Ответ: \(s=2, -2\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1520: \(\frac{b^{2}+12}{4b^{2}-4b+1} = \frac{b^{2}+12}{(2b)^{2}-2 \cdot 26 \cdot 1+1^{2}}; 2b-1=0; 2b=1; b=\frac{1}{2}; При b = \frac{1}{2} алгебраическая дробь не имеет смысла\)
Ответ: \(b=\frac{1}{2} \)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1526: \(\frac{8m-3}{|m| \cdot (m^{2}+1)}; |m| \neq 0; m^{2} +1 > 0 при любых значениях x, m \neq 0; значит алгебраическая дробь имеет смысл при любых значениях m, кроме m \neq 0\)
Ответ: \(Алгебраическая дробь имеет смысл при любых значениях m, кроме m \neq 0\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1528: \(\frac{14k^{2}+14}{(k^{2}-9)(k^{2}+1)}=\frac{14(k^{2}+1)}{(k^{2}-3^{2})(k^{2}+1)}=\frac{14}{(k-3)(k+3)}; k-3 \neq 0; k \neq 3 или k+3 \neq 0; k \neq -3 Алгебраическая дробь имеет смысл при любых значениях k, кроме p=-3; 3\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1537: \(\frac{x^{2}-4x+9}{\frac{x-2}{x}} = \frac{x^{2}-4x+9}{1} \cdot \frac{x}{x-2} = \frac{x(x^{2}-4x+9)}{x-2}; x-2 \neq 0 ⇒ x \neq 2; При любых значениях x, кроме 2\)
Ответ: \(При любых значениях x, кроме 2\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1542: \(\frac{a-b}{a+b}; a+b \neq 0; a \neq -b\)
Ответ: \(a \neq -b\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1543: \(\frac{2ab}{3a-b}; 3a-b \neq 0; 3a \neq b; a \neq \frac{b}{3}\)
Ответ: \(a \neq \frac{b}{3}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1546: \(\frac{2x-5}{(x-3)(x^{2}+3x+9)-x(x^{2}+3)+3(9+x)} = \frac{2x-5}{x^{3}+3x^{2}+9x-3x^{2}-9x-27-(x^{3}+3x)+27+3x} = \frac{2x-5}{x^{3}-27-x^{3}-3x+27+3x} = \frac{2x-5}{0} - алгебраическая дробь не имеет смысла, так как на ноль делить нельзя\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1549: \(\frac{-3}{b^{2}+4}; -3< 0; b^{2}+4<0 при любых значениях b, значит и значение дроби отрицательно\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1552: \(\frac{a^{2}-b^{2}}{(a+b)^{2}} = \(\frac{(a-b)(a+b)}{(a+b)^{2}} = \frac{(4-(-2))(4+(-2))}{(x+(-2))^{2}} = \frac{6 \cdot 2}{2^{2}} = \frac{12}{4} = 3\)
Ответ: 3
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1554: \(\frac{x^{2}+y^{2}}{x^{4}-y^{4}} = \frac{x^{2}+y^{2}}{(x^{2})^{2}-(y^{2})^{2}} = \frac{x^{2}+y^{2}}{(x^{2}-y^{2})(x^{2}+y^{2}} = \frac{1}{x^{2}-y^{2}} = \frac{1}{{x-y)(x+y)}; \frac{1}{(13-12)(13+12)} = \frac{1}{1 \cdot 25} = \frac{1}{25} = 0,4\)
Ответ: 0.4
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1555: \(\frac{m^{4}-n^{4}}{m^{3}n-mn} = \frac{(m^{2})^{2}-(n^{2})^{2})}{mn(m^{2}-n^{2})} = \frac{(m^{2}-n^{2})(m^{2}+n^{2})}{mn(m^{2}-n^{2})} = \frac{m^{2}+n^{2}}{mn}; \frac{2^{2}+(-1)^{2}}{2 \cdot (-1)} = \frac{4+1}{-2} = \frac{5}{-2} = -2,5\)
Ответ: -2.5
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1557: \(f(a) = \frac{a^{2}-a-2}{a+5}; f(3a) = \frac{(3a)^{2}-(3a)-2}{(3a)+5} = \frac{9a^{2}-3a-2}{3a+5}; f(a-3) = \frac{(a-3)^{2}-(a-3)-2}{(a-3)+5} = \frac{a^{2}-6a+9-a+3-2}{a-3+5} = \frac{a^{2}-7a+10}{a+2}\)
Ответ: \( \frac{a^{2}-7a+10}{a+2}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1559: \(f(ab) = \frac{(ab)^{2}-ab-2}{ab+5} = \frac{a^{2}b^{2}-ab-2}{ab +5}; f(a+b) = \frac{(a+b)^{2}-(a+b)-2}{a+b+5} = \frac{a^{2}+2ab+b^{2}+a-b-2}{a+b+5}; f(\frac{a}{b}) = \frac{(\frac{a}{b})^{2}-\frac{a}{b}-2}{\frac{a}{b}+5} = \frac{\frac{a^{2}}{b^{2}}-\frac{a}{b}-2}{\frac{a}{b}+5} = \frac{\frac{a^{2}}{b^{2}}-\frac{a^{2}}{b^{2}}-\frac{2b^{2}}{b^{2}}}{\frac{a}{b}+\frac{5b}{b}} = \frac{a^{2}-ab-2b^{2}}{b^{2}} \cdot \frac{b}{a+5b} = \frac{b(a^{2}-ab-2b^{2}}{b^{2}(a+5b)} = \frac{a^{2}-ab-2b^{2}}{b(a+5b)} = \frac{a^{2}-ab-2b^{2}}{ab+5b^{2}}\)
Ответ: \(\frac{a^{2}-ab-2b^{2}}{ab+5b^{2}}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1568: \(x-a \neq 0; -3-a \neq 0; a \neq -3 \)
Ответ: \(x-a \neq 0; -3-a \neq 0; a \neq -3 \)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1573: \(\frac{ax-3}{x^{2}+1}; a \in R\)
Ответ: \(a \in R\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1575: \(\frac{3x-a}{ax-5}; при a=0\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1580: \(-\frac{a}{b} = -3\)
Ответ: -3
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1581: \(\frac{b}{a} = \frac{1}{3}\)
Ответ: \(\frac{1}{3}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1583: \(\frac{b+2a}{a} = \frac{b}{a} + \frac{2a}{a} = \frac{1}{3} + 2 = 2\tfrac{1}{3}\)
Ответ: \( 2\tfrac{1}{3}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №1584: \(\frac{x}{2y} = \frac{1}{2} \cdot \frac{x}{y} = \frac{1}{2} \cdot \frac{1}{5} = \frac{1}{10}\)
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №1588: \(\frac{x+y}{x} = \frac{x}{x} + \frac{y}{x} = 1 + \frac{y}{x} = 1+5 = 6; \frac{x}{y}=0,2=\frac{2}{10} = \frac{1}{5}\)
Ответ: \(\frac{1}{5}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №1591: \(\frac{2a-b}{2b}=\frac{2a}{2b}-\frac{b}{2b}=\frac{a}{b}-\frac{1}{2}=5-\frac{1}{2}=4\tfrac{1}{2}= 4,5\)
Ответ: 4.5
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №1596: \(\frac{y}{x}=\frac{1}{15}\)
Ответ: \(\frac{1}{15}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №1599: \(\frac{2n+5}{n}=\frac{2n}{n}+\frac{5}{n}=2+\frac{5}{n}; При n=1;5 дробь \frac{2n+5}{n} является натуральным числом.\)
Ответ: \(дробь \frac{2n+5}{n} является натуральным числом.\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №1605: \(x^{2} \cdot k-(k+1)x-4=0; x^{2} \cdot k- x \cdot k - x-4=0; k(x^{2}-x)=4+x; k=\frac{4+x}{x^{2}-x}\)
Ответ: \(\frac{4+x}{x^{2}-x}\)