№1555
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Найдите значение алгебраической дроби \(\frac{m^{4}-n^{4}}{m^{3}n-mn^3}\) при \(m=2, n=-1\)
Ответ
-2.5
Решение № 1555:
\(\frac{m^{4}-n^{4}}{m^{3}n-mn} = \frac{(m^{2})^{2}-(n^{2})^{2})}{mn(m^{2}-n^{2})} = \frac{(m^{2}-n^{2})(m^{2}+n^{2})}{mn(m^{2}-n^{2})} = \frac{m^{2}+n^{2}}{mn}; \frac{2^{2}+(-1)^{2}}{2 \cdot (-1)} = \frac{4+1}{-2} = \frac{5}{-2} = -2,5\)