№1546
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Докажите, что алгебраическая дробь не имеет смысла ни при каких значениях переменной: \(\frac{2x-5}{(x-3)(x^{2}+3x+9)-x(x^{2}+3)+3(9+x)}\)
Ответ
NaN
Решение № 1546:
\(\frac{2x-5}{(x-3)(x^{2}+3x+9)-x(x^{2}+3)+3(9+x)} = \frac{2x-5}{x^{3}+3x^{2}+9x-3x^{2}-9x-27-(x^{3}+3x)+27+3x} = \frac{2x-5}{x^{3}-27-x^{3}-3x+27+3x} = \frac{2x-5}{0} - алгебраическая дробь не имеет смысла, так как на ноль делить нельзя\)