№1526
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Найдите, при каких значениях переменной имеет смысл алгебраическая дробь: \(\frac{8m-3}{|m| \cdot (m^{2}+1)}\)
Ответ
\(Алгебраическая дробь имеет смысл при любых значениях m, кроме m \neq 0\)
Решение № 1526:
\(\frac{8m-3}{|m| \cdot (m^{2}+1)}; |m| \neq 0; m^{2} +1 > 0 при любых значениях x, m \neq 0; значит алгебраическая дробь имеет смысл при любых значениях m, кроме m \neq 0\)