№15882
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Хорда пересекает диаметр окружности под углом \(30^{\circ}\) и делит его на отрезки, равные 5 и 13. Найдите расстояние от центра окружности до хорды.
Ответ
NaN
Решение № 15880:
Проведите из центра \(О\) окружности перпендикуляр \(ОМ\) к хорде. Тогда точка \(М\) — середина хорды, а расстояние от центра окружности до хорды равно \(ОМ\). Точка \(С\) пересечения хорды и диаметра делит диаметр на отрезки длиной 5 и 13, поэтому \(СО = 4\) (рис. ниже). Катет \(ОМ\) прямоугольного треугольника \(СОМ\) лежит против угла \(30^{\circ}\) , поэтому \(ОМ = \frac{1}{2} CO=2\) <img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/prasolov_7_9/7_geometry/207_answer.png' />