Задача №15893

№15893

Экзамены с этой задачей:

Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите острые углы треугольника.

Ответ

NaN

Решение № 15891:

Пусть окружность, построенная на катете \(АС\) прямоугольного треугольника \(АВС\) как на диаметре, проходит через середину \(М\) гипотенузы \(АВ\). Тогда угол \(АМС\) прямой, поэтому медиана \(СМ\) совпадает с высотой. Следовательно, треугольник \(АВС\) равнобедренный .

Поделиться в социальных сетях

Комментарии (0)