№15876
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить системы уравнений: \( \left\{\begin{matrix} x^{2y^{2}-1}=5, & & \\ x^{y^{2}+2}=125. & & \end{matrix}\right. \)
Ответ
\( \left ( 5; 1 \right ), \left ( 5; -1 \right ) )\
Решение № 15874:
ОДЗ: \( 0< x\neq 1 \) Логарифмируя первое и второе уравнения ситемы по основанию получаем \( \left\{\begin{matrix} \log _{5}x^{2y^{2}-1}=\log _{5}5, & & \\ \log _{5}x^{2y^{2}+2}=\log _{5}125, & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \left ( 2y^{2}-1 \right \)log _{5}x=1 & & \\ \left ( y^{2}+2 \right \)log _{5}x=3 & & \end{matrix}\right. \Rightarrow \log _{5}x=\frac{1}{2y^{2}-1} \) Из второго уравнения системы имеем \( \frac{y^{2}+2}{2y^{2}-1}=3. y^{2}=1 \), откуда \( y=\pm 1 \) Тогда \( \log _{5}x=1 \), т.е. \( x=5\)