№15880
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить системы уравнений: \( \left\{\begin{matrix} 10^{1+\lg \left ( x+y \right )}=50 & & \\ \lg \left ( x-y \right )+\lg \left ( x+y \right )=2-\lg 5 & & \end{matrix}\right. \)
Ответ
\( \left (\frac{9}{2}; \frac{1}{2} \right ) )\
Решение № 15878:
ОДЗ: \( \left\{\begin{matrix} x-y> 0, & & \\ x+y> 0. & & \end{matrix}\right. \) Имеем: \( \left\{\begin{matrix} 10^{1+\lg \left ( x+y \right )}=\lg 50, & & \\ \lg \left ( x^{2}-y^{2} \right )=\lg 20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1+\lg \left ( x+y \right )=\lg 50, & & \\ x^{2}-y^{2}=20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x+y=5, & & \\ \left ( x-y \right \)left ( x+y \right )=20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x+y=5, & & \\ x-y=4, & & \end{matrix}\right. \), откуда \( x=\frac{9}{2}, y=\frac{1}{2} \)