Задача №15891

№15891

Экзамены с этой задачей:

Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Докажите, что любая хорда окружности не превосходит её диаметра.

Ответ

NaN

Решение № 15889:

Все диаметры окружности равны, поэтому хорду \(АВ\) можно сравнить с диаметром \(АС\). Если хорда \(АВ\) отлична от диаметра, то диаметр \(АС\) — гипотенуза прямоугольного треугольника, а хорда \(АВ\) — его катет.

Поделиться в социальных сетях

Комментарии (0)