Задача №15941

№15941

Экзамены с этой задачей:

Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Через данную точку окружности проведите хорду, которая бы делилась данной хордой пополам.

Ответ

NaN

Решение № 15939:

Пусть \(M\) — данная точка окружности с центром \(O\) (рис. 146), \(AB\) — данная хорда. Если \(AB\) — диаметр, то искомая хорда — также диаметр. Если \(AB\) — хорда, не являющаяся диаметром, \(MN\) — искомая хорда, а \(K\) — ее середина, то \(OK ⊥ MN\), т. е. радиус \OM\ виден из точки \(K\) под прямым углом, значит, середина искомой хорды \(MN\) лежит на окружности с диаметром \(OM\).

Поделиться в социальных сетях

Комментарии (0)