Задача №15877

№15877

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить системы уравнений: \( \left\{\begin{matrix} \log _{y}x+\log _{x}y=2 & & \\ x^{2}-y=20 & & \end{matrix}\right. \)

Ответ

\( \left ( 5; 5 \right ) )\

Решение № 15875:

ОДЗ: \( \left\{\begin{matrix} 0< x\neq 1 & & \\ 0< y\neq 1 & & \end{matrix}\right. \) Из первого уравнения имеем: \( \log _{y}x+\frac{1}{\log _{y}x}-2=0, \log _{y}^{2}x-2\log _{y}x+1=0, \left ( \log _{y}x-1 \right )^{2}=0 \), откуда \( \log _{y}x=1, x=y \) Из второго уравнения системы имеем \( y^{2}-y-20=0 \), откуда \( y_{1}=-4, y_{2}=5; y_{1}=-4 \) не подходит по ОДЗ. Тогда \( x=y=5 \)

Поделиться в социальных сетях

Комментарии (0)