Задача №15889

№15889

Экзамены с этой задачей:

Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах треугольника равные отрезки. Докажите, что этот треугольник равнобедренный.

Ответ

NaN

Решение № 15887:

Пусть окружность с диаметром \(АС\) пересекает стороны \(АВ\) и \(ВС\) в точках \(D\) и \(Е\), причём \(АD = СЕ\). Тогда прямоугольные треугольники \(АСЕ\) и \(CAD\) равны по гипотенузе и катету, поэтому \(\angle A = \angle C\).

Поделиться в социальных сетях

Комментарии (0)