№15889
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах треугольника равные отрезки. Докажите, что этот треугольник равнобедренный.
Ответ
NaN
Решение № 15887:
Пусть окружность с диаметром \(АС\) пересекает стороны \(АВ\) и \(ВС\) в точках \(D\) и \(Е\), причём \(АD = СЕ\). Тогда прямоугольные треугольники \(АСЕ\) и \(CAD\) равны по гипотенузе и катету, поэтому \(\angle A = \angle C\).