№15888
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что этот треугольник равнобедренный.
Ответ
NaN
Решение № 15886:
Пусть окружность с диаметром \(АВ\) проходит через середину \(М\) стороны \(АС\). Тогда \(ВМ\) — высота треугольника и его медиана. Треугольник, в котором медиана является высотой, равнобедренный.