Задача №15888

№15888

Экзамены с этой задачей:

Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что этот треугольник равнобедренный.

Ответ

NaN

Решение № 15886:

Пусть окружность с диаметром \(АВ\) проходит через середину \(М\) стороны \(АС\). Тогда \(ВМ\) — высота треугольника и его медиана. Треугольник, в котором медиана является высотой, равнобедренный.

Поделиться в социальных сетях

Комментарии (0)