Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная показательной и логарифмической функции,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3100:
Ответ: -1
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная показательной и логарифмической функции,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3108: Для нахождения производной функции \( f(x) = x^2 - 2x \) в точках пересечения с осями, необходимо выполнить следующие шаги:
Ответ: f^{'}(0)=-2, f^{'}(2)=2
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная показательной и логарифмической функции,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3109: Для нахождения производной функции \( f(x) = x^2 \) в точках пересечения с графиком \( y = 6x - 9 \), необходимо выполнить следующие шаги:
Ответ: f^{'}(3)=-6
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная показательной и логарифмической функции,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3110: Для нахождения значений производной функции \( f(x) = \frac{x-1}{x^2+1} \) в заданных точках \( x_0 = 0 \) и \( x_0 = 1 \), необходимо выполнить следующие шаги:
Ответ: f^{'}(x)=\frac{-x^{2}+2x+1}{(x^{2}+2)^{2}}, f^{'}(0)=1, f^{'}(1)=\frac{1}{2}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная показательной и логарифмической функции,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3111: Для нахождения производной функции \( f(x) = 1 + \cos(2x) \) в точках пересечения с осями, необходимо выполнить следующие шаги:
Ответ: f^{'}(x)=-2sin2x, f^{'}(0)=0, f^{'}\left ( \frac{\pi }{2}+\pi k \right )=0
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3152: Для нахождения производной функции \( f(x) = \frac{1}{3}x + 2 \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=\frac{1}{3}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3154: Для нахождения производной функции \( f(x) = 2x - \frac{1}{4} \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=2\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3160: Для нахождения производной функции \( f(x) = \frac{1}{9}x^2 - \frac{1}{2}x + 2 \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=\frac{2}{9}x-\frac{1}{2}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3162: Для нахождения производной функции \( f(x) = x^2 - x \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=2x-1\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3163: Для нахождения производной функции \( f(x) = 2x - 4x^2 - 5 \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=-8x+2\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3166: Для нахождения производной функции \( f(x) = -2x^2 - \frac{5}{3}x \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=4x-\frac{5}{3}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3169: Для нахождения производных функции \( f(x) = \frac{1}{2}x^3 + \frac{3}{2}x^2 - 1 \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=\frac{3}{2}x^{2}+3x\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3173: Для нахождения производной функции \( f(x) = -2x^3 + \frac{1}{2}x - \frac{7}{2}x^2 \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=-6x^{2}-7x+\frac{1}{2}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3177: Для нахождения производной функции \( f(x) = \frac{1}{5}x^5 + \frac{1}{4}x^4 - 3x^2 + 9 \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=x^{4}+x^{3}-6x\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3182: Для нахождения производной функции \( f(x) = \sqrt{x} \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=\frac{1}{2\sqrt{x}}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, производная степенных функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3187: Для нахождения производной функции \( f(x) = x^2 - \frac{1}{x^2} \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=2x+\frac{2}{x^{3}}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная произведения и частного функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3213: Для нахождения производной функции \( f(x) = (2x+1)^2(x-1) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=3(4x^{2}-1)\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная произведения и частного функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3219: Для нахождения производной функции \( f(x) = \frac{x+5}{x-1} \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=-\frac{6}{(x-1)^{2}}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная произведения и частного функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3220: Для нахождения производной функции \( f(x) = \frac{3x - 7}{2x + 9} \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=\frac{41}{(2x+9)^{2}}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная произведения и частного функций,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3222: Для нахождения производной функции \( f(x) = \frac{x^2}{x+1} \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=\frac{x^{2}+2x}{(x+1)^{2}}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3237: Для нахождения производной функции \( f(x) = \cos(2x) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=-2sin2x\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3249: Для нахождения производной функции \( f(x) = \left( \frac{1}{2} + x \right) \tan(x) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=tgx+\frac{2x+1}{2cos^{2}x}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3258: Для нахождения производной функции \( f(x) = \sin\left(x^2 + \frac{7}{2}x + 1\right) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=\left ( 2x+\frac{7}{2} \right )cos\left ( x^{2}+\frac{7}{2}x+1 \right )\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3259: Для нахождения производной функции \( f(x) = \operatorname{ctg}(1 - 3x - x^2) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=\frac{3+2x}{sin^{2}(1-3x-x^{2})}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3262: Для нахождения производной функции \( f(x) = \sin(3x) + \cos(3x) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=3(cos3x-sin3x)\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3263: Для нахождения производной функции \( f(x) = \sin^2(3x) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=3sin6x\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3267: Для нахождения производной функции \( f(x) = \operatorname{ctg}(3x) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=-\frac{3}{sin^{2}3x}\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3269: Для нахождения производной функции \( f(x) = \cos(2x + 7) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=-2sin(2x+7)\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3270: Для нахождения производной функции \( f(x) = 3 \cos \left( \frac{1}{2} x - 1 \right) + \frac{3x}{2} \sin \left( \frac{x}{2} - 1 \right) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=-\frac{3x}{4}cos\left ( \frac{1}{2}x-1 \right )\)
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производные тригонометрических функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3271: Для нахождения производной функции \( f(x) = x^2 + \sin(-2x - 1) \), необходимо выполнить следующие шаги:
Ответ: \(f^{'}(x)=2x-2cos(-2x-1)\)