Задача №3110

№3110

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная показательной и логарифмической функции,

Задача в следующих классах: 11 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Выписать производную в заданной точке (точках) \(x_{0}\)\(f(x)=\frac{x-1}{x^{2}+1}, x_{0}=0; 1\)

Ответ

f^{'}(x)=\frac{-x^{2}+2x+1}{(x^{2}+2)^{2}}, f^{'}(0)=1, f^{'}(1)=\frac{1}{2}

Решение № 3110:

NaN

Поделиться в социальных сетях

Комментарии (0)