Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Из пункта \( А\) в пункт \( В\), удаленный от \( А\) на расстояние 100 км, отправился междугородный автобус. Из-за ненастной погоды он ехал со скоростью на 10 км/ч меньшей, чем предполагалось по расписанию, и поэтому прибыл в пункт \( В\) с опозданием на 30 мин. С какой скоростью должен был ехать автобус по расписанию?

Решение №2583: Пусть скорость автобуса по расписанию \( x \) км/ч, он ехал со скоростью \( x-10 \) км/ч. 30 минут=\( \frac{1}{2} \) часа. Время по расписанию \( \frac{100}{x} \) ч, во время непогоды \( \frac{100}{x-10} \) ч, отсюда \( \frac{100}{x-10}-\frac{100}{x}=\frac{1}{2} \frac{100}{x-10}-\frac{100}{x}-\frac{1}{2}=0 \frac{100*2*x-100*2(x-10)-x(x-10)}{2x(x-10)}=0 \frac{200x-200x+2000-x^{2}+10x}{2x(x-10)}=0 -x^{2}+10x+2000=0 2x(x-10)\neq 0; x\neq 0; x\neq 10 D=10^{2}-4*(-1)*2000=8100 x_{1}=\frac{-10-90}{-2}=50 x_{2}=\frac{-10+90}{-2}=-40 \).

Ответ: 50 км/ч

Велосипедист ехал с определенной скоростью из деревни на станцию, находящуюся от деревни на расстоянии 32 км. Обратно он ехал со скоростью на 1 км/ч большей, затратив на обратный путь на 8 мин меньше, чем на путь от деревни до станции. С какой скоростью ехал велосипедист до станции?

Решение №2584: Пусть скорость велосипедиста до турбазы \( x \) км/ч, обратно он снизил скорость на 4 км/ч и ехал со скоростью \( x-4 \) км/ч. Расстояние 16 км он проехал туда и обратно за 3 часа 20 минут. 3 часа 20 минут= \( 3\frac{20}{60}=\frac{10}{3} \). \( \frac{16}{x}+\frac{16}{x-4}=\frac{10}{3} \frac{16*3(x-4)+16*3x+10x(x-4)}{3x(x-4)}=0 \frac{48x-192+48x-10x+40x}{3x(x-4)}=0 -10x^{2}+136x-192=0 3x(x-4)\neq 0; x\neq 0; x\neq 4 D=136^{2}-4*(-10)*(-192)=18496-7680=10816=104^{2} x_{1}=\frac{-136-104}{2*(-10)}=\frac{-240}{-20}=12 x_{2}=\frac{-136+104}{-20}=1,6 x=12; 12-4=8 \).

Ответ: 8 км/ч

Автобус-экспресс отправился от автовокзала в аэропорт, находящийся от автовокзала на расстоянии 40 км. Через 10 мин вслед за автобусом выехал пассажир на такси. Скорость такси на 20 км/ч больше скорости автобуса. Найдите скорости такси и автобуса, если в аэропорт они прибыли одновременно.

Решение №2585: Пусть скорость автобуса \( x\) км/ч, то скорость такси \(x+20 \) км/ч, время движения автобуса \( \frac{40}{x} \), а такси \( \frac{40}{x+20} \), автобус вышел на 10 минут раньше, т.е. на \( \frac{1}{6} \) ч. Составляем уравнение: \( \frac{40}{x}-\frac{40}{x+20}=\frac{1}{6} \frac{40*6(x+20)-40*6x-x(x+20)}{6x(x+20)}=0 \frac{240x+4800-240x-x^{2}-20x}{6x(x+20)}=0 -x^{2}-20x+4800=0 6x(x+20)\neq 0; x\neq 0; x\neq -20 D=(-20)^{2}-4*(-1)*4800=400+19200=19600=140^{2} x_{1}=\frac{20-140}{-2}=\frac{-120}{-2} x_{2}=\frac{20+140}{-2}=-80 x=60, 60+20=80 \) - скорость такси.

Ответ: 80 км/ч, 60 км/ч

Поезд должен был пройти 54 км. Пройдя 14 км, он был задержан у семафора на 10 мин. Увеличив после этого скорость на 10 км/ч, он прибыл на место назначения с опозданием на 2 мин. Определите первоначальную скорость поезда.

Решение №2589: Пусть первоначальная скорость поезда \( x \) км/ч то по расписанию время прохождения\( \frac{54}{x} \)ч. Фактически \( \frac{14}{x} \), затем 10 минут \( \frac{1}{6} \), затем \( \frac{54-14}{x+10}=\frac{40}{x+10} \)ч и опоздал на 2 минуты. 2мин=\( \frac{1}{30}\). Отсюда: \( \frac{54}{x}-\frac{1}{30}=\frac{14}{x}+\frac{40}{x+10}+\frac{1}{6} \frac{54}{x}-\frac{14}{x}=\frac{40}{x+10}+\frac{1}{6}+\frac{1}{30}; \frac{40}{x}=\frac{40}{x+10}+\frac{1}{5} \frac{40}{x}=\frac{200+x+10}{5(x+10); \frac{40}{x}}=\frac{210+x}{5(x+10)}; x\neq 0; x+10\neq 0 x^{2}+210x=200(x+10) x^{2}+10x-2000=0 D=8100 x_{1}=\frac{-10-90}{2}=-50 x_{2}=\frac{-10+90}{2}=40 \).

Ответ: 40 км/ч

Велосипедист проехал 40 км от города до фермы. Возвращаясь, он сначала 2 ч ехал с той же скоростью, а затем сделал остановку на 20 мин. После остановки велосипедист увеличил скорость на 4 км/ч и затратил на обратный путь столько же времени, сколько на путь от города до фермы. С какой скоростью двигался велосипедист после остановки?

Решение №2593: Пусть первоначальная скорость была \( x \) км/ч, обратно он проехал 2ч и проехал \( 2x \) км, осталось \(40-2x \) км. После остановки на 20 минут, он скорость увеличил и ехал \( x+4 \) км/ч, отсюда: \(\frac{40}{x}=\frac{40-2x}{x+4}+2+\frac{1}{3} \frac{40}{x}=\frac{40-2x}{x+4}+\frac{7}{3}; \frac{40}{x}=\frac{120-6x+7x+28}{3(x+4)} \frac{40}{x}=\frac{x+148}{3x+12}; 40(3x+2)=x(x+148) x^{2}+148x-120x-480=0 x^{2}+28x-480=0 x^{2}+28x-480=0 k=14 x_{1}=-k\pm \sqrt{k^{2}-c}=-14\pm \sqrt{196+480}=-14\pm \sqrt{676}=-14\pm 2b x_{1}=-14-2b=-40 x_{2}=-14+2b=12 x=12, 12+4=16 \).

Ответ: 16 км/ч

Велосипедист проехал 18 км с определенной скоростью, а оставшиеся 6 км со скоростью на 6 км/ч меньшей первоначальной. Найдите скорость велосипедиста на втором участке пути, если на весь путь он затратил 1,5 ч.

Решение №6452: На весь путь затратил 1,5 часа, отсюда \( \frac{18}{x}+\frac{6}{x-6}=1,5 \frac{18(x-6)+6x}{x(x-6)}=\frac{3}{2} \frac{18x-108+6x}{x(x-6)}-\frac{3}{2}=0 \frac{(24x-108)*2}-3x(x-6){2x(x-6)}=0 \frac{48x-216-3x^{2}+18x}{2x(x-6)}=0 -3x^{2}+66x-216=0 | : 3 2x(x-6)\neq 0 x^{2}-22x+72=0 D=(-22)^{2}+4*1*72=484-282=196=14^{2} x_{1}=\frac{22-14}{2}=4 x_{2}=\frac{22+14}{2}=18 x=18, 18-6=12 \).

Ответ: 12 км/ч

Через два часа после выхода из \( А\) автобус был задержан на 30 мин и, чтобы прибыть в \( B\) по расписанию, должен был увеличить скорость на 5 км/ч. Найдите первоначальную скорость автобуса, если известно, что расстояние между пунктами \( А\) и \( В\) равно 260 км.

Решение №6459: Пусть первоначальная скорость автобуса равна \( x \) км/ч, за 2 часа он проехал 2 км, осталось \( 260-2x \) км и он увеличил скорость на 5 км/ч и ехал со скоростью \( x+5 \) км/ч и время затратил \( \frac{260-2x}{x+5} \). 30 мин =\( \frac{1}{2} \). Составляем уравнение: \( \frac{260}{x}-(2+\frac{260-x}{x+5})=\frac{1}{2} \frac{260}{x}-\frac{1}{2}=2+\frac{260-2x}{x+5} \frac{520-x}{2x}=\frac{2x+10+260-2x}{x+5} \frac{520-x}{2x}=\frac{270}{x+5} (520-x)(x+5)=270*2x 520x-x^{2}-5x+2600=540z -x^{2}-25x+2600=0 x^{2}+25x-2600=0 D=25^{2}-4*1*(-2600)=625+10400=11025=105^{2} x_{1}=\frac{-25-105}{2}=\frac{-130}{2} x_{2}=\frac{-25+105}{2}=40 \).

Ответ: 40 км/ч

Велосипедист проехал 30 км от города до турбазы. На обратном пути он ехал 2 ч с той же скоростью, а затем на 3 км/ч быстрее и затратил на обратный путь на 6 мин меньше, чем на путь из города до турбазы. Какое время затратил велосипедист на обратный путь?

Решение №6460: Пусть скорость велосипедиста от города до турбазы \( x \) км/ч, затратил \( \frac{30}{x} \). Обратно ехал 2 ч с той же скоростью, а затем \( x+3 \) км/ч, время на обратный путь \( 2+\frac{30-2x}{x+3} \) и это меньше на 6 минут=\( \frac{1}{10} \). Составляем уравнение: \( \frac{30}{x}-\frac{1}{10}=2+\frac{30-2x}{x+3} \frac{300-x}{10x}=\frac{2x+6+30-2x}{x+3} \frac{300-x}{10x}=\frac{36}{x+3}; (x+3)(300-x)=36*10x 300x-x^{2}+900-3x-360x=0 x\neq 0, x+3\neq 0 -x^{2}+63x+900=0 D=(-63)^{2}-4*(-1)*900=3969+3600=7569=87^{2} x_{1}=\frac{63-87}{-2}=12, x_{2}=\frac{63+87}{-2}=-75 x=12 2+\frac{30-2*12}{12+3}=2+\frac{6}{15}=2\frac{2}{5} \).

Ответ: 2 ч 24 мин

Расстояние между станциями \( А\) и \( В\) равно 240 км. Из \( В\) по направлению к \( А\) вышел поезд. Через 30 мин навстречу ему из \( А\) вышел другой поезд, скорость которого на 12 км/ч больше скорости первого поезда. Найдите скорости поездов, если известно, что они встретились на середине пути между \( А\) и \( В\).

Решение №6463: пусть скорость одного поезда \( x \) км/ч, другого на 12 км/ч больше \( x+12 \) км/ч. Первый был на 30 минут в пути дольше и встретились они на середине пути, т.е. каждый прошел 120 км. Отсюда :\( \frac{120}{x}-\frac{1}{2}=\frac{120}{x+12};\frac{240-x}{2x}=\frac{120}{x+12} 240x=(240-x)(x+12), x(x+12)\neq 0 240x=240x-x^{2}+2880-12x x^{2}+12x+240x-240x-2880=0 x^{2}+12x-2880=0 D=12^{2}-1*1*(-2880)=144+11520=11664=108^{2} x_{1}=\frac{-12+108}{2}=48 x_{2}=\frac{-12-108}{2}=-60 x=48, 48+12=60 \).

Ответ: 60 км /ч

Велосипедист проехал 96 км на 2 ч быстрее, чем предполагал. При этом за каждый час он проезжал на 1 км больше, чем намеревался проезжать за 1 ч 15 мин. С какой скоростью ехал велосипедист?

Решение №6465: Пусть предпологал ехать со скоростью \( x \) км/ч, за 1 час 15 минут проехал \( 1\frac{1}{4}=\frac{5}{4}x \), фактическая скорость была \( \frac{5}{4}x+1=\frac{5x+4}{4} \). Время по плану \( \frac{96}{x} \), фактически \( 96 : (\frac{5x+4}{4})=\frac{96*4}{5x+4}=\frac{384}{5x+4} \) и это быстрее на 2ч. Составляем уравнение: \( \frac{96}{x}-2=\frac{384}{5x+4} \frac{96(5x+4)-2x(5x+4)-384x}{x(5x+4)}=0 \frac{480x+384-10x^{2}-8x-384x}{x(5x+4)}=0 -10x^{2}+88x+384=0 | :(-2) 5x^{2}-44x-192=0 D=(-44)^{2}-4*5*(-192)=1936+3840=5776=76^{2} x_{1}=\frac{44-76}{10}=\frac{-32}{10}=-3,2 x_{2}=\frac{44+76}{10}=\frac{64}{4}=16 \).

Ответ: 16 км/ч

Члены школьного кружка натуралистов отправились на катере собирать лекарственные травы. Проплыв вниз по течению реки 35 км, они сделали трехчасовую остановку, после чего вернулись назад. Определите скорость катера в стоячей воде, если все путешествие заняло 7 ч, а скорость течения реки равна 3 км/ч.

Решение №6470: Пусть скорость катера в стоячей воде равна \( x \) км/ч, т.к. скорость течения реки равна 3 км/ч, то скорость катера по течению реки равна\( x+3 \) км/ч, а против течения \( x-3 \) км/ч. Время по течению \( \frac{35}{x+3} \)ч, а время против течения \( \frac{35}{x-3} \). Все путешествие заняло 7 ч. \( \frac{35}{x+3}+\frac{35}{x-3}+3=7 \frac{35}{x+3}-\frac{35}{x-3}=4 \frac{35(x-3)+35(x+3)-4(x^{2}-9)}{(x+3)(x-3)}=0 \frac{35x-105+35x+105-4x^{2}+36}{(x+3)(x-3)} -4x^{2}+70x+36=0 | :(-2) (x+3)(x-3)\neq 0 2x^{2}-35x-18=0 D=(-35)^{2}-4*2*(-18)=1225+144=1369=17^{2} x_{1}=\frac{35-37}{2*2}=-\frac{1}{2} x_{2}=\frac{35+37}{4}=18 \).

Ответ: NaN

Первый пешеход прошел 6 км, а второй пешеход 5 км. Скорость первого пешехода на 1 км/ч меньше, чем скорость второго. Найдите скорость первого пешехода, если известно, что он был в пути на 30 мин больше второго.

Решение №12748: 30 минут =\( \frac{1}{2} \) часа. Составляем уравнение: \( \frac{6}{x}-\frac{5}{x+1}=\frac{1}{2} \frac{6}{x}-\frac{5}{x+1}-\frac{1}{2}=0 \frac{6*2(x+1)-5*2x-x(x+1)}{2x(x+1)}=0 \frac{12x+12-10x-x^{2}-x}{2x(x+1)}=0 -x^{2}+x+12=0 x(x+1)\neq 0 x\neq 0, x\neq -1 D=1^{2}-4*(-1)*12=49=7^{2} x_{1}=\frac{-1-7}{2*(-1)}=4 x_{2}=\frac{-1+7}{-2}=-3 \).

Ответ: 4 км/ч

Расстояние 30 км один из двух лыжников прошел на 20 мин быстрее другого. Скорость первого лыжника была на 3 км/ч больше скорости второго. Какова была скорость каждого лыжника?

Решение №12751: 20 мин=\( \frac{20}{60}=\frac{1}{3} \) ч. Пусть скорость второго лыжника \( x \) км/ч, то скорость первого на 3 км/ч больше, значит \( x+3 \) км/ч. Расстояние в 30 км один прошел быстрее второго на \( \frac{1}{3} \) часа, отсюда \( \frac{30}{x+3}+\frac{x}{3}=\frac{30}{x}; \frac{30}{x+3}+\frac{x}{3}-\frac{30}{x}=0 \frac{30*3x+x(x+3)-30*3(x+3)}{3x(x+3)}=0 \frac{90x+x^{2}+3x-90x-270}{3x(x+3)}=0 x^{2}+3x-270=0 3x(x+3)\neq 0; x\neq 0, x\neq -3 D=9-4*1*(-270)=1089=33^{2} x_{1}=\frac{-3-33}{20}=-18 x_{2}=\frac{-3+33}{-2}=15 x=15, 15+3=18 \).

Ответ: 15 км/ч, 18км/ч.

Два автомобиля выезжают одновременно из одного города в другой. Скорость первого автомобиля на 10 км/ч больше скорости второго, и поэтому первый приезжает на место на 1 ч раньше второго. Найдите скорость каждого автомобиля, зная, что расстояние между городами равно 560 км.

Решение №12752: Первый приезжает на 1 час раньше. \( \frac{560}{x+10}+1=\frac{560}{x}; \frac{560}{x+10}+1-\frac{560}{x}=0 \frac{560x+x^{2}+10x-560x-5600}{x(x+10)}=0 x^{2}+10x-5600=0 x(x+10)\neq 0; x\neq 0; x\neq -10 D=10^{2}-4*1*(-5600)=100+22400=22500=150^{2} x_{1}=\frac{-10+150}{2}=70 x_{2}=\frac{-10-150}{2}=-80 x=70, 70+10=80 \).

Ответ: 80 км/ч, 70 км/ч

Велосипедист рассчитывал проехать по маршруту \( ВС\) за 2 ч. Однако когда до пункта \( С\) оставалось 6 км, из-за встречного ветра он снизил скорость на 3 км/ч и прибыл в пункт \( С\) на 6 мин позже, чем рассчитывал. Чему равна длина маршрута \( ВС\)?

Решение №12758: Пусть длина маршрута равна \( x \)км, по плану должен приехать за 2 часа, со скоростью \( \frac{x}{2} \). Фактически время движения: \( 1) \frac{x-6}{\frac{x}{2}}=\frac{2(x-6)}{x} 2) \frac{6}{\frac{x}{2}-3}=6:(\frac{x-6}{2})=\frac{12}{x-6} \) и еще 6 мин =\( \frac{1}{10} \) ч. Получаем уравнение: \( \frac{2(x-6)}{x}+\frac{12}{x-6}=2+\frac{1}{10}; \frac{2x-12}{x}+\frac{12}{x-6}=\frac{21}{10} \frac{(2x-12)*10(x-6)+12*10x-21(x^{2}-6x)}{10x(x-6)}=0 (20x-120)(x-6)+120x-12x^{2}+126=0, x(x-6)\neq 0 20x^{2}-120x-120x+720+120x-21x^{2}+126x=0 -x^{2}+6x+720=0 D=6^{2}-4*(-1)*720=36+2880=2916=54^{2} x_{1}=\frac{-6-54}{2}=30 x_{2}=\frac{-6+54}{2}=-24 \).

Ответ: 30 км/ч

Расстояние между городами равно 44 км. Из этих городов навстречу друг другу выходят одновременно два пешехода и встречаются через 4 ч. Если бы первый вышел на 44 мин раньше второго, то их встреча произошла бы в середине пути. С какой скоростью идет каждый пешеход?

Решение №12761: 1) \( 44:4=11 \) км/ч - сумма их скоростей. Пусть первый пешеход шел со скоростью \( x \), то второй \( 11-x \) км/ч. Если бы первый вышел на 44 минуты раньше, то встреча произошла бы на середине пути, т.е. каждый пришел бы по 22 км. Составляем уравнение: \( \frac{22}{x}-\frac{11}{15}=\frac{22}{11-x} \frac{22}{x}-\frac{11}{15}-\frac{22}{11-x}=0; \frac{22*15(11-x)-11x(11-x)-22*15x}{15x(11-x)}=0 \frac{3630-330x-121x+11x^{2}-330x}{15x(11-x)}=0 11x^{2}-781x+3630=0 | : 11; 15x(11-x)\neq 0 x^{2}-71x+330=0 D=(-71)^{2}-4*1*330=5041-1320=3721=61^{2} x_{1}=\frac{71-61}{2}=5 x_{2}=\frac{71+61}{2}=66 x=5, 11-5=6 \).

Ответ: NaN

Автомобиль выехал из пункта \( А\) в пункт \(В\) и некоторое время двигался с постоянной скоростью. Проехав 3/4 пути, он увеличил скорость на 20 км/ч. Когда автомобиль прибыл в пункт \(B,\) оказалось, что его средняя скорость движения составила 64 км/ч. Найдите первоначальную скорость автомобиля.

Решение №12764: Разделим путь на четыре участка по 1/4. На 1,2, 3 участке двигался \( х\) км, на 4 - \(х+20\). \( х+х+х+х+20=64*4\) (ведь 64 среднее арифмет., а участок из четырех частей) \( 4х+20=256 4х=236 х=236:4 х=59 км/ч\)  Проверка: \( 59+59+59+(59+20)=64\)

Ответ: 59 км/ч

Из пункта \(М \) в пункт \( N\) выходит первый пешеход, а через 2 ч навстречу ему из пункта \(N\) в пункт \(М\) выходит второй пешеход. К моменту встречи второй пешеход прошел 7/9 от расстояния, пройденного к этому моменту первым пешеходом. Сколько часов требуется первому пешеходу на весь путь от \(M\) до \(N\), если второй пешеход проходит путь от \(N\) до \(М\) за 7 ч?

Решение №12765: За \( x \) часов второй пешеход пройдет \( \frac{7}{7+9} \) частей пути, а за 7 часов - весь путь, значит \( x*1=7*\frac{7}{16} \). За \( x+2=\frac{49}{16}+2=\frac{81}{16} \) часа первый пешеход пройдет \( \frac{9}{16} \) пути, значит на весь путь у него уйдет \( \frac{81}{16}:\frac{9}{16} \).

Ответ: NaN

Моторная лодка прошла 5 км по течению реки и 6 км против течения, затратив на весь путь 1 ч. Скорость течения реки равна 3 км/ч. Найдите скорость движения лодки по течению реки.

Решение №12767: Пусть соббственная скорость лодки\( x \)км /ч, т.к. скорость течения реки 3 км/ч, то скорость движения лодки по течению \( x+3 \), потратили \( \frac{5}{x+3} \). Скорость лодки против течения \( x-3 \) км/ч и время \( \frac{6}{x-3} \). На весь путь 1 час. \( \frac{5}{x+3}+\frac{6}{x-3}=1 \frac{5(x-3)+6(x+3)+18-x^{2}+9}{(x+3)(x-3)}=0 \frac{5x-15+6x+18-x^{2}+9}{(x+3)(x-3)}=0 x^{2}+11x+9+3=0 x\neq \pm 3 -x^{2}+9+11x+3=0 -x^{2}+11x+12=0 D=11^{2}-4*(-1)*12=121+48=169=13^{2} x_{1}=\frac{-11-13}{-2}=12; x_{2}=\frac{-11+13}{-2}=-1\) Собственная скорость лодки 12 км/ч, то по течению \(12+3=15 \).

Ответ: 15 км/ч

Турист проехал расстояние между двумя городами за три дня. В первый день он проехал \frac{1}{5} всего пути и еще 60 км, во второй - \frac{1}{4} всего пути и еще 20 км и в третий день - \frac{23}{80} всего пути и оставшиеся 25 км. Найти расстояние между городами.

Пока решения данной задачи,увы,нет...

Ответ: 400

Дорога от пункта А до пункта В идет сначала по ровному месту, затем в гору. Автомобиль, выехав из А в В, двигался по ровному месту со скоростью 70 км/ч, в гору – со скоростью 60 км/ч. Доехав до пункта В, он тотчас повернул назад и двигался под гору со скоростью 75 км/ч. Найдите длину ровного участка пути, если на весь путь от А до В и назад автомобиль затратил 3 ч 20 минут и проехал за это время 250 км.

Пока решения данной задачи,увы,нет...

Ответ: 105

Из города А в город В выезжает велосипедист, а через 3 часа после его выезда из города В навстречу ему выезжает мотоциклист, скорость которого в 3 раза больше, чем скорость велосипедиста. Велосипедист и мотоциклист встречаются посередине между А и В. Сколько часов в пути до встречи был велосипедист?

Пока решения данной задачи,увы,нет...

Ответ: 4.5

Мотоциклист задержался у шлагбаума на 24 минуты. Увеличив после этого свою скорость на 10 км/ч, он наверстал опоздание за 80 км. Определить скорость мотоциклиста до задержки.

Пока решения данной задачи,увы,нет...

Ответ: 40

Первую четверть пути поезд двигался со скоростью 80 км/ч, а оставшуюся часть – со скоростью 60 км/ч. С какой средней скоростью двигался поезд?

Пока решения данной задачи,увы,нет...

Ответ: 64

Самолет летел сначала со скоростью 220 км/ч. Когда ему осталось лететь на 385 км меньше, чем он пролетел, скорость его стала равной 330 км/ч. Средняя скорость самолета на всем пути 250 км/ч. Какое расстояние пролетел самолет?

Пока решения данной задачи,увы,нет...

Ответ: 1375

Два туриста выезжают одновременно из городов А и В навстречу друг другу. Первый проезжает в час на 2 км больше второго и приезжает в город В на час раньше, чем второй в город А. Расстояние между городами 40 км. Какова скорость каждого туриста?

Пока решения данной задачи,увы,нет...

Ответ: 10; 8

Из города в колхоз, находящийся на расстоянии 20 км, была отправлена грузовая машина; через 8 минут вслед за ней вышел автобус, который приехал в колхоз одновременно с грузовой машиной. Сколько километров в час проходил автобус, если он шел на 5 км/ч быстрее грузовика?

Пока решения данной задачи,увы,нет...

Ответ: 30

Путешественник предполагал пройти 30 км с некоторой скоростью. Но с этой скоростью он шел всего 1 час, а затем стал проходить в час на 1 км меньше. В результате он прибыл в конечный пункт на 1 час 15 минут позднее, чем предполагал. С какой скоростью путешественник предполагал пройти путь?

Пока решения данной задачи,увы,нет...

Ответ: 5

Велосипедист каждую минуту проезжает на 500 км меньше, чем мотоциклист, поэтому на путь в 120 км он затрачивает времени на 2 часа больше, чем мотоциклист. Вычислить скорость велосипедиста.

Пока решения данной задачи,увы,нет...

Ответ: 30

Велосипедист проехал 25 км. При этом 1 час он ехал по ровной дороге, а 1 час – в гору. Какова скорость (км/ч) велосипедиста по ровной дороге, если каждый километр по ровной дороге он проезжал на 2 минуты быстрее, чем в гору?

Пока решения данной задачи,увы,нет...

Ответ: 15