Задача №6463

№6463

Экзамены с этой задачей: Задачи на движение по прямой Задачи на движение по прямой

Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, Задачи на движение, Движение вдогонку и движение с отставанием, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Рациональные уравнения как математические модели реальных ситуаций,

Задача в следующих классах: 8 класс

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Расстояние между станциями \( А\) и \( В\) равно 240 км. Из \( В\) по направлению к \( А\) вышел поезд. Через 30 мин навстречу ему из \( А\) вышел другой поезд, скорость которого на 12 км/ч больше скорости первого поезда. Найдите скорости поездов, если известно, что они встретились на середине пути между \( А\) и \( В\).

Ответ

60 км /ч

Решение № 6463:

пусть скорость одного поезда \( x \) км/ч, другого на 12 км/ч больше \( x+12 \) км/ч. Первый был на 30 минут в пути дольше и встретились они на середине пути, т.е. каждый прошел 120 км. Отсюда :\( \frac{120}{x}-\frac{1}{2}=\frac{120}{x+12};\frac{240-x}{2x}=\frac{120}{x+12} 240x=(240-x)(x+12), x(x+12)\neq 0 240x=240x-x^{2}+2880-12x x^{2}+12x+240x-240x-2880=0 x^{2}+12x-2880=0 D=12^{2}-1*1*(-2880)=144+11520=11664=108^{2} x_{1}=\frac{-12+108}{2}=48 x_{2}=\frac{-12-108}{2}=-60 x=48, 48+12=60 \).

Поделиться в социальных сетях

Комментарии (0)