Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3034: Для нахождения критических точек функции \( y = x^2 + 4x + 5 \), необходимо выполнить следующие шаги:
Ответ: -2
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3036: Для нахождения критических точек функции \( y = \frac{2x^3 + x^2 + 1}{x^2} \), необходимо выполнить следующие шаги:
Ответ: 1
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3042: Для нахождения критических точек функции \( y = x^2 - 11x + 12 \), необходимо выполнить следующие шаги:
Ответ: \frac{11}{2}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3046: Для нахождения критических точек функции \( y = x \sqrt{4 + x} \), необходимо выполнить следующие шаги:
Ответ: -\frac{8}{3}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3047: Для нахождения критических точек функции \( y = 4x + \frac{9}{x} \), необходимо выполнить следующие шаги:
Ответ: \left \{ -\frac{3}{2};\frac{3}{2} \right \}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3052: Для нахождения критических точек функции \( y = x^3 - \frac{3}{2}x^2 + 1 \), необходимо выполнить следующие шаги:
Ответ: {0;1}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3056: Для нахождения критических точек функции \( y = \frac{x^2}{x+1} \), необходимо выполнить следующие шаги:
Ответ: {0;-2}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №3057: Для нахождения критических точек функции \( y = -x^4 + 2x^2 + 5 \), необходимо выполнить следующие шаги:
Ответ: {-1;0;1}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3064: Для нахождения критических точек функции \( y = \frac{x^2}{17} - \ln(x^2 - 8) \), необходимо выполнить следующие шаги:
Ответ: {-5;5}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №3067: Для нахождения критических точек функции \( y = \frac{x}{x^2 - 1} \), необходимо выполнить следующие шаги:
Ответ: Нет критических точек
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №6908: Для нахождения критических точек функции \( y = -5x^2 + 10x - 3 \), необходимо выполнить следующие шаги:
Ответ: 1
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №6910: Для нахождения критических точек функции \( y = 3x^2 + \frac{48}{x} \), необходимо выполнить следующие шаги:
Ответ: 2
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №6914: Для нахождения критических точек функции \( y = 3x^2 - 2x + 10 \), необходимо выполнить следующие шаги:
Ответ: \frac{1}{3}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №6921: Для нахождения критических точек функции \( y = \cos x \cos 2x \), необходимо выполнить следующие шаги:
Ответ: \left \{ \pi n, \pm arcsin\sqrt{\frac{5}{6}}+\pi k, k\in Z \right \}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №6924: Для нахождения критических точек функции \( y = x + 8\sin(x) - 6\cos(x) \), необходимо выполнить следующие шаги:
Ответ: NaN
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №6928: Для нахождения критических точек функции \( y = x^3 - 3x^2 + 2 \), необходимо выполнить следующие шаги:
Ответ: {0;2}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №6931: Для нахождения критических точек функции \( y = -x^3 + 3x + 2 \), необходимо выполнить следующие шаги:
Ответ: {-1;1}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №6933: Для нахождения критических точек функции \( y = x^3 - 12x \), необходимо выполнить следующие шаги:
Ответ: {-2;1}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №6938: Для нахождения критических точек функции \( y = 2x^3 + 24x + 4 \), необходимо выполнить следующие шаги:
Ответ: критических точек нет
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №13211: Для нахождения критических точек функции \( y = 5^{2x+1} - 2 \cdot 5^{x+3} \), необходимо выполнить следующие шаги:
Ответ: 2
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №13212: Для нахождения критических точек функции \( y = x^2 - 6x + 7 \), необходимо выполнить следующие шаги:
Ответ: 3
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №13213: Для нахождения критических точек функции \( y = \frac{4}{x} - \frac{1}{x^2} \), необходимо выполнить следующие шаги:
Ответ: \frac{1}{2}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №13216: Для нахождения критических точек функции \( y = x - \sqrt{4 + x} \), необходимо выполнить следующие шаги:
Ответ: -\frac{15}{14}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №13217: Для нахождения критических точек функции \( y = x^2 + 3x \), необходимо выполнить следующие шаги:
Ответ: -\frac{3}{2}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №13218: Для нахождения критических точек функции \( y = \frac{10}{x} - \frac{7}{x^2} \), необходимо выполнить следующие шаги:
Ответ: \frac{7}{5}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №13222: Для нахождения критических точек функции \( y = 2x^2 + x^3 - 3 \), необходимо выполнить следующие шаги:
Ответ: \left \{ 0;-\frac{4}{3} \right \}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №13223: Для нахождения критических точек функции \( y = \sin^{2}(3x) + 3\sqrt{x^{2} - 4x + 4} + \cos(1) \), необходимо выполнить следующие шаги:
Ответ: \left \{ 2;\frac{1}{6}\left ( \frac{\pi }{2}+2\pi m \right ), m=1,0,-1,-2,...; \frac{1}{6}\left ( -\frac{\pi }{2}+2\pi n \right ), n=2,3,... \right \}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №13226: Для нахождения критических точек функции \( y = 2x^3 - 3x^2 \), необходимо выполнить следующие шаги:
Ответ: {0;1}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №13227: Для нахождения критических точек функции \( y = 3x^2 + 2x^3 \), необходимо выполнить следующие шаги:
Ответ: {0;-1}
Экзамены с этой задачей:
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Производная и экстремумы. Критические точки,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №13230: Для нахождения критических точек функции \( y = 6x - 2x^3 \), необходимо выполнить следующие шаги:
Ответ: {-1;1}