Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 28800
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 0.5
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: \frac{\sqrt{5}}{2}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: (-\infty ;0]\cup \left [ \frac{1}{4};+\infty \right )
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 8
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 0.6
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13638: \( x^{n}=\frac{2n^{2}-1}{n+1}=2n-2+\frac{1}{n+1}\). Покажем, что последовательность \(\left \{ x_{n} \right \} \)не ограничена сверху, т.е.\( \forall M> 0 \exists n_{0}\in N: \forall n\geqslant n_{0} 2n-2+\frac{1}{n+1}> M\). Действительно, возьмем произвольное \(M> 0\). Тогда неравенство \(2n-2> M\) влечет за собой \(x_{n}> M\). Значит, в качестве \(n_{0}\) можно взять \(n_{0}=\left [ \frac{M+2}{2} \right ] \forall n\in N x_{n}> 0\), откуда следует, что последовательность ограничена снизу.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13639: \( \left | \sin n \right |\leqslant 1\), поэтому последовательность \(\left \{ x_{n} \right \}\) ограниченная.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13640: Представим общий член последовательности в виде \(x_{n}=3-\frac{5}{n+2}\). При \(x\geqslant 1\) функция \(f\left ( x \right )=3-\frac{5}{x+2} \) возрастает, множество ее значений \(E\left ( f \right )=\left [ \frac{4}{3}; 3 \right )\). Таким образом, последовательность \(\left \{ x_{n} \right \}\) ограниченная.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13642: Так как \(\forall n\in N 1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}} \geqslant \frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}=\frac{n}{\sqrt{n}}=\sqrt{n}\), а последовательность с общим членом \(y_{n}=\sqrt{n}\) не ограничена сверху, то последовательность \(\left \{ x_{n} \right \}\) не ограничена сверху. Понятно, что \(\forall n\in N x_{1}< x_{n}\) , а значит, последовательность \(\left \{ x_{n} \right \} \)ограничена снизу.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13644: Последовательность \(\left \{ x_{n} \right \}\) ограничена.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13647: Последовательность \(\left \{ y_{n} \right \} \) обязательно ограничена. По одному из определений ограниченности последовательность \(\left \{ x_{n} \right \}\) является ограниченной, если \(\exists M> 0:\forall n\in N \left | x_{n} \right |\leqslant M\). Но тогда \(\forall n\in N \left | y_{n} \right |\leqslant M\), поскольку \(\left | y_{n} \right |=\left \| x_{n} \right \|=\left | x_{n} \right |\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13649: Обязательно органичена. Результат не зависит от ограниченности последовательности \(\left \{ x_{n} \right \}\), поскольку значения косинуса любого числа по модулю не превосходят 1.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13650: Необязательно ограничена. Например, для \(x_{n}=\frac{\pi }{2}-\frac{1}{n}\) последовательность \(\tan x_{n}\) будет неограниченной. Доказать это удобнее всего, решив неравенство \(\tan x> M\) и убедившись, что при любом значении M в множество решений этого неравенства попадают члены последовательности \(\left \{ x_{n} \right \}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13653: Так как последовательности \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\) ограничены, существуют такие числа A и B, что \(\forall n\in N \left ( \left | x_{n} \right |\leqslant A \right )\wedge \left ( \left | y_{n} \right |\leqslant B \right ) \) Неравенства \(\left | x_{n}+y_{n} \right |\leqslant \left | x_{n} \right |+\left | y_{n} \right |\leqslant A+B\) показывают, что последовательность \(z_{n}=x_{n}+y_{n}\) обязательно ограничена.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13655: Так как последовательности \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\) ограничены, существуют такие числа A и B, что \(\forall n\in N \left ( \left | x_{n} \right |\leqslant A \right )\wedge \left ( \left | y_{n} \right |\leqslant B \right ) \) Неравенства \(\left | x_{n}*y_{n} \right |\leqslant \left | x_{n} \right |*\left | y_{n} \right |\leqslant A+B\) показывают, что последовательность \(z_{n}=x_{n}+y_{n}\) обязательно ограничена.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13657: Так как последовательности \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\) ограничены, существуют такие числа A и B, что \( \forall n\in N \left ( \left | x_{n} \right |\leqslant A \right )\wedge \left ( \left | y_{n} \right |\leqslant B \right ) \) Пусть \(x_{n}=\sqrt[n]{2}, y_{n}=1. Тогда z_{n}=n\) - неограниченная последовательность.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13658: Рассмотрим функцию \(f\left ( x \right )=-x^{2}-n+1=\left ( n-\frac{1}{2} \right )^{2}+\frac{3}{4} \left \). Она возрастает на множестве натуральных чисел, значит, последовательность \(\{ x_{n} \right \}\) возрастающая.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13660: Последовательность с общим членом \(x_{n}=\frac{4n+3}{2n+1}=2+\frac{1}{2n+1} \) убывающая, так как \(f\left ( x \right )=2+\frac{1}{2x+1}\) убывает на \(\left [ -1;+\propto \right ) \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13661: Последовательность с общим членом \(\x_{n}=\frac{2n}{n^{2}+1}=\frac{2}{n+\frac{1}{n}}\) убывает, так как функция\( f\left ( x \right )=x+\frac{1}{x}\) возрастает и положительна на \(\left [ 1;+\propto \right ) \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13663: Не является монотонной. Общий член последовательности может быть записан в виде \(x_{n}=\left\{\begin{matrix}6k, n=3k \\ 2k-1, n=2k-1 \end{matrix}\right. \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13665: \( \frac{1}{n^{3}}< \varepsilon \Leftrightarrow n^{3}> \frac{1}{\varepsilon }\Leftrightarrow n> \sqrt[3]{\frac{1}{\varepsilon }}\), т.е. \(n\geqslant \left [ \sqrt[3]{\frac{1}{\varepsilon }} \right ]+1\). \(Если \varepsilon =\frac{1}{10}\), то\( n\geqslant \left [ \sqrt[3]{10} \right ]+1=3 \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13666: \( \frac{1}{n+1}< \varepsilon \Leftrightarrow n+1> \frac{1}{\varepsilon }\Leftrightarrow n> \frac{1}{\varepsilon }-1\), т.е. \(n\geqslant \left [ \frac{1}{\varepsilon } -1\right ]+1 \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13667: \( \lim n \to \frac{n}{2n+1}=\frac{1}{2}\Leftrightarrow \forall \varepsilon > 0 \exists N_{\varepsilon }\in N: \forall n\geqslant N_{\varepsilon }\left | \frac{n}{2n+1}-\frac{1}{2} \right |< \varepsilon\) . Рассмотрим неравенство \(\left | \frac{n}{2n+1} -\frac{1}{2}\right |< \varepsilon \Leftrightarrow \frac{1}{4n+2}< \varepsilon \Leftrightarrow n> \frac{1}{4\varepsilon }-\frac{1}{2}\), т.е. в качестве \(N_{\varepsilon }\) можно взять \( N_{\varepsilon }=\left [ \frac{1}{4\varepsilon }-\frac{1}{2} \right ]+1. \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13669: Так как \(\left ( \frac{1}{3} \right )^{n}< \frac{1}{n}< \varepsilon\) , то в качестве \(N_{\varepsilon }\) можно взять \(N_{\varepsilon }=\left [ \frac{1}{\varepsilon } \right ]+1\). То есть мы доказали, что \(\lim_{n \to \propto} \frac{1}{3^{n}}=0 \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13670: Докажем, что \( \lim_{n \to \propto} \left ( -\frac{2}{5} \right )^{n}=0\). Тогда должно выполняться \(\left | \left ( -\frac{2}{5} \right )^{n} \right |=\left | \left ( -1 \right )^{n}\left ( \frac{2}{5} \right )^{n} \right |=\left ( \frac{2}{5} \right )^{n}< \varepsilon\). Взяв \(N_{\varepsilon }=\left [ \log _{\frac{5}{2}}\frac{1}{3} \right ]+1\), получим, что неравенство \(\left ( \frac{2}{5} \right )^{n}< \varepsilon\) выполнено для всех \(n> N_{\varepsilon }. \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13673: \( x_{n}=n^{2}; y_{n}=n^{3} \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13674: 1
Ответ: 1
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13675: 1. При n> 6 выполнено неравенство \(n^{2}-5n-7> 0\), откуда при n> 6 будет выполняться \(x_{n}=1\)
Ответ: 1
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №13677: Сходимость последовательности \(\left \{ x_{n} \right \} \)означает существование какого-либо ее предела. Значит, отрицание утврждения "последовательность \(\left \{ x_{n} \right \}\) "сходится" выглядит так: \(\forall a\exists \varepsilon > 0:\forall N_{\varepsilon }\in N \exists n\geqslant N_{\varepsilon }:\left | x_{n}-a \right |\geqslant \varepsilon \)
Ответ: NaN