№13655
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Известно, что последовательности \(\left \{ x_{n} \right \}\) и \(\left \{ y_{n} \right \}\) являются неограниченными. Выясните, является ли последовательность\( \left \{ z_{n} \right \}\) и,обязательно ограниченной,может ли она быть неограниченной, или всегда является ограниченной (если последовательность \(\left \{ z_{n} \right \}\) существует):\(z_{n}=x_{n}+y_{n} \)
Ответ
NaN
Решение № 13653:
Так как последовательности \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\) ограничены, существуют такие числа A и B, что \(\forall n\in N \left ( \left | x_{n} \right |\leqslant A \right )\wedge \left ( \left | y_{n} \right |\leqslant B \right ) \) Неравенства \(\left | x_{n}+y_{n} \right |\leqslant \left | x_{n} \right |+\left | y_{n} \right |\leqslant A+B\) показывают, что последовательность \(z_{n}=x_{n}+y_{n}\) обязательно ограничена.