№13667
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решите неравенство в натуральных числах для \(\varepsilon =\frac{1}{10} \varepsilon =\frac{1}{100}: \frac{1}{n}< \varepsilon \)
Ответ
NaN
Решение № 13665:
\( \frac{1}{n^{3}}< \varepsilon \Leftrightarrow n^{3}> \frac{1}{\varepsilon }\Leftrightarrow n> \sqrt[3]{\frac{1}{\varepsilon }}\), т.е. \(n\geqslant \left [ \sqrt[3]{\frac{1}{\varepsilon }} \right ]+1\). \(Если \varepsilon =\frac{1}{10}\), то\( n\geqslant \left [ \sqrt[3]{10} \right ]+1=3 \)