№13651
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Известно, что последовательность \(\left \{ x_{n} \right \}\) ограничена. Выясните, является ли последовательность\( \left \{ y_{n} \right \}\),обязательно ограниченной,может ли она быть ограниченной, или всегда является неограниченной (если последовательность \(\left \{ y_{n} \right \}\) существует): \(y_{n}=\cos x_{n} \)
Ответ
NaN
Решение № 13649:
Обязательно органичена. Результат не зависит от ограниченности последовательности \(\left \{ x_{n} \right \}\), поскольку значения косинуса любого числа по модулю не превосходят 1.