№13649
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Известно, что последовательность \(\left \{ x_{n} \right \}\) ограничена. Выясните, является ли последовательность \(\left \{ y_{n} \right \}\) ,обязательно ограниченной,может ли она быть ограниченной, или всегда является неограниченной (если последовательность \(\left \{ y_{n} \right \} \)существует): \(y_{n}=\left | x_{n} \right | \)
Ответ
NaN
Решение № 13647:
Последовательность \(\left \{ y_{n} \right \} \) обязательно ограничена. По одному из определений ограниченности последовательность \(\left \{ x_{n} \right \}\) является ограниченной, если \(\exists M> 0:\forall n\in N \left | x_{n} \right |\leqslant M\). Но тогда \(\forall n\in N \left | y_{n} \right |\leqslant M\), поскольку \(\left | y_{n} \right |=\left \| x_{n} \right \|=\left | x_{n} \right |\)