Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Верно ли, что \(\lim_{n \to \propto} x_{n}=+\propto\), если все члены последовательноти \(\left \{ x_{n} \right \}\) - натуральные числа?

Решение №3509: Например поледовательность с общим членом \(x_{n}=1. \)

Ответ: Нет

Приведите примеры таких бесконечно малых последовательностей \(\left \{ x_{n} \right \} \) и бесконечно больших последовательностей \(\left \{ y_{n} \right \}\), что \(\lim_{n \to \propto} \left ( x_{n}*y_{n} \right )=B\), где B - конечное число\)

Решение №3513: \( x_{n}=\frac{1}{2n+1}; y_{n}=n. \)

Ответ: NaN

Приведите примеры таких бесконечно малых последовательностей \(\left \{ x_{n} \right \} \)и бесконечно больших последовательностей \(\left \{ y_{n} \right \}\), что \(\lim_{n \to \propto} \left ( x_{n}*y_{n} \right )\) не существует.

Решение №3515: \( x_{n}=\frac{\left ( -1 \right )^{n}}{n}; y_{n}=n. \)

Ответ: NaN

Приведите примеры таких бесконечно больших последовательностей \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{n \to \propto} \frac{x_{n}}{y_{n}}=1\)

Решение №3517: \( x_{n}=n-1; y_{n}=n+1\)

Ответ: NaN

Приведите примеры таких бесконечно больших последовательностей \left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{ n \to \propto} \frac{x_{n}}{y_{n}}\) не существует.

Решение №3519: \( x_{n}=\left ( -1 \right )^{n}; y_{n}=n \)

Ответ: NaN

Пусть \( \lim_{n \to \propto} x_{n}=\propto\). Верно ли, что \(\lim_{n \to \propto} y_{n}=\propto, \lim_{n \to \propto} \left ( x_{n}+y_{n} \right )=\propto\)

Решение №3529: Нет, например \(x_{n}=\left ( -1 \right )^{n}n y_{n}=\left ( -1 \right )^{n+1}n. Тогда \lim_{n \to \propto} \left ( x_{n}+y_{n} \right )=0 \)

Ответ: NaN

Приведите примеры таких бесконечно малых последовательностей \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{ n \to \propto} \frac{x_{n}}{y_{n}}\) не существует.

Решение №3534: \(x_{n}=\frac{\left ( -1 \right )^{n}}{n}, y_{n}=\frac{1}{n} \)

Ответ: NaN

Пусть \(\lim n \to \propto x_{n}y_{n}=0\). Следует ли отсюда, что: хотя бы один из пределов \(\lim_{n \to \propto} x_{n} или \lim_{n \to \propto} y_{n} \)

Решение №3536: Нет, например \(x_{n}=\left\{\begin{matrix}n, n=2k \\ \frac{1}{n^{2}}, n=2k-1 \end{matrix}\right. y_{n}=\left\{\begin{matrix}\frac{1}{n^{2}}, n=2k \\ n, n=2k-1 \end{matrix}\right.\) Тогда \(x_{n}y_{n}=\frac{1}{n}\)

Ответ: NaN

Докажите, что из существования предела частного двух последовательностей \(\lim_{n \to \propto} \left ( \frac{x_{n}}{y_{n}} \right ) \) не следует существования хотя бы одного из пределов \(\lim_{n \to \propto} x_{n} \)или\( \lim_{n \to \propto} y_{n}\)

Решение №3537: \( x_{n}=\left ( -1 \right )^{n}, y_{n}=\left ( -1 \right )^{n}n\)

Ответ: NaN

Докажите, что из существования пределов\( \lim_{n \to \propto} \left ( \frac{x_{n}}{y_{n}} \right )\) и \(\lim_{n \to \propto} y_{n} \)следует существование \(\lim_{n \to \propto} x_{n}\)

Решение №3539: \( \lim_{n \to \propto} \frac{x_{n}}{y_{n}}*\lim n \to \propto y_{n}=\lim_{n \to \propto} \frac{x_{n}*y_{n}}{y_{n}}=\lim_{n \to \propto} x_{n} \)

Ответ: NaN

Приведите примеры расходящихся последовательностей \(\left \{ x_{n} \right \} \)и \(\left \{ y_{n} \right \}\), для которых сходится последовательность \(\left \{ x_{n}+y_{n} \right \} \)

Решение №3540: \( x_{n}=n+1, y_{n}=-n \)

Ответ: NaN

Известно, что \(\forall n\in N x_{n}\neq 1\) и \(\lim_{n \to \propto} x_{n}=1\). Найдите \(\lim_{n \to \propto} y_{n}\), если: \(y_{n}=\frac{x_{n}-1}{x_{n}^{2}-1}\)

Решение №3548: \(\frac{1}{3}; -1\)

Ответ: NaN

Найдите \(\lim n_{\to \propto} x_{n}\), если \(x_{n}=\frac{3+0.5^{n}}{0.3^{n}+5}\)

Решение №3552: \( \lim_{n \to \propto} \frac{3^{n}}{5+3^{n+1}}=\lim_{n \to \propto} \frac{1}{5\left ( \frac{1}{3} \right )^{n}+3}=\frac{1}{3} \)

Ответ: \frac{1}{3}

Найдите\( \lim_{n \to \propto} x_{n}\), если \(x_{n}=\sqrt[3]{n^{3}+2n^{2}}-n\)

Решение №3568: \( \lim_{n \to \propto} \left ( \sqrt[3]{n^{3}+2n^{2}-n} \right )=\lim_{ n \to \propto} \frac{n^{3}+2n^{2}-n^{3}}{\sqrt[3]{\left ( n^{3}+2n^{2} \right )^{2}}+\sqrt[3]{n^{6}+2n^{5}}+n^{2}}=\lim_{n \to \propto} \frac{2n^{2}}{n^{2}\left ( \sqrt[3]{\left ( 1+\frac{2}{n} \right )^{2}}+\sqrt[3]{1+\frac{2}{n}}+1 \right )}=\frac{2}{3} \)

Ответ: \frac{2}{3}

Найдите \(\lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\sqrt[n]{2^{n}-n^{2}} \)

Решение №3575: При n> 7 верно неравенство (доказываемое по индукции)\(2^{n-1}\leqslant 2^{n}-n^{2}< 2^{n}-n^{2}< 2^{n}\Leftrightarrow \sqrt[n]{2^{n-1}}\leqslant \sqrt[n]{2^{n}-n^{2}}< \sqrt[n]{2^{n}}, \lim_{n \to \propto} \sqrt[n]{2^{n-1}}=\lim_{n \to \propto}\sqrt[n]{2^{n}}=2. \)

Ответ: 2

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}= \frac{\sqrt[3]{n}-\sqrt[3]{n+1}}{\sqrt[4]{n+1}+\sqrt[4]{n}}\)

Решение №3606: \( \lim_{n \to \propto}\frac{\sqrt[3]{n}-\sqrt[3]{n+1}}{\sqrt[4]{n+1}+\sqrt[4]{n}}=\lim_{n \to \propto}\frac{\left ( n-n-1 \right )\left ( \sqrt[4]{n+1}-\sqrt[4]{n} \right )\left ( \sqrt{n+1}+\sqrt{n} \right )}{\left ( \sqrt[3]{n^{2}}+\sqrt[3]{n^{2}+n}+\sqrt[3]{\left ( n+1 \right )^{2}} \right )\left ( n+1-n \right )}=\lim_{n \to \propto}\frac{-n^{\frac{1}{4}}\left ( \sqrt[4]{1+\frac{1}{n}}-1 \right )n^{\frac{1}{2}}\left ( \sqrt{1+\frac{1}{n}}+\sqrt{1} \right ) }{n\frac{2}{3}\left ( \sqrt[3]{1}+\sqrt[3]{1+\frac{1}{n}}+\sqrt[3]{1+\frac{2}{n}+\frac{1}{n^{2}}} \right )}=0\)

Ответ: 0

При каких значениях параметра a последовательность \(x_{n}=\sqrt{an^{2}+bn+2}-n, n\in N\), имеет конечный предел?

Решение №3607: 1) Если \(a\neq 0, то \lim_{n \to \propto}\sqrt{an^{2}+bn+2}-n=\lim n \to \propto\frac{an^{2}+bn+2-n^{2}}{\sqrt{an^{2}+bn+2}+n}=\lim_{n \to \propto}\frac{\left ( a-1 \right )n^{2}+bn+2}{n\left ( \sqrt{a+\frac{b}{n}+\frac{2}{n^{2}}+1} \right )}=A\) Ясно, что если \(a=1\), то \(A=\frac{b}{2}\), еcли \(a> 1\), то \(A=+\propto \), и если \(a< 1, A=-\propto\) .Тогда \(\lim_{n \to \propto} x_{n}=1 при b=2\) 2) Если a=0. Тогда при всех значениях b имеем \(\lim_{n \to \propto}\left ( \sqrt{bn+2}-n \right )=-\propto \)

Ответ: 1

Пусть \(\lim_{n \to \propto} a_{n}=a, a> 0\). Докажите, что \(\lim_{n \to \propto}\sqrt[n]{a_{n}}=1 \)

Решение №3610: \( \lim_{n \to \propto} \sqrt[n]{a}=1\) при a> 0. Пусть \(\lim_{n \to \propto} \sqrt[n]{a}=A> 0\). Из определения предела следует, что, начиная с некоторого n,выполнено неравенство \(\frac{A}{2}< a_{n}< \frac{3A}{2}, откуда \sqrt[n]{\frac{A}{2}}< \sqrt[n]{a_{n}}< \sqrt[n]{\frac{3A}{2}}\). По теореме о сжатой последовательности получаем \(\lim_{n \to \propto} \sqrt[n]{a}=1 .\)

Ответ: NaN

Приведите пример сходящейся неотрицательной последовательности \(\left \{ a_{n} \right \}\), для которой последовательность\(\left \{ \sqrt[n]{a_{n}} \right \}\) расходится.

Решение №3611: \(x_{n}=\left\{\begin{matrix}\left ( \frac{1}{2} \right )_{n}, n=2k \\ \left ( \frac{1}{3} \right )^{n}, n=2k-1 \end{matrix}\right. \)

Ответ: NaN

Приведите примеры таких бесконечно больших последовательностей \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{n \to \propto} \left ( x_{n}+y_{n} \right )\)=B, где B - конечное число.

Решение №7394: \( x_{n}=\sqrt{n^{2}+n}; y_{n}=-n\)

Ответ: NaN

Приведите примеры таких бесконечно больших последовательностей \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{n \to \propto} \left ( x_{n}+y_{n} \right ) \)не существует.

Решение №7396: \( x_{n}=\left ( -1 \right )^{n}; y_{n}=n\)

Ответ: NaN

Приведите примеры таких бесконечно малых последовательностей \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\), что \(\lim_{ n \to \propto} \frac{x_{n}}{y_{n}}=1 \)

Решение №7405: \( x_{n}=\frac{1}{n+1}, y_{n}=\frac{1}{n} \)

Ответ: NaN

Пусть \(\lim_{n \to \propto} x_{n}=a> 0\).Докажите, что \(\lim_{n \to \propto} \sqrt{x_{n}}=\sqrt{a}\) (требуется доказать наличие предела и вычислить его).

Решение №7418: Пусть \(\sqrt{x_{n}}=\sqrt{a}+\alpha _{n}\). Заметим, что \(\alpha =\sqrt{x_{n}}-\sqrt{a}=\frac{x_{n}-a}{\sqrt{x_{n}}+\sqrt{a}}\), и получим \)\left | \alpha_{n} \right |< \frac{\left | x_{n} -a\right |}{\sqrt{a}}\). Пусть дано произвольное число \(\varepsilon > 0\). Так как последовательность \(\left \{ x_{n}-a \right \}\) бесконечно малая, то, начиная с некоторого номера n=k, будет выполняться неравенство \(\left | x_{n}-a \right |< \varepsilon \sqrt{a}\). Следовательно, при \(n\geqslant k\) будет выполняться неравенство \(\left | \alpha _{n} \right |< \varepsilon\) , а значит \lim_{ n \to \propto} \alpha _{n}=0. Тогда \lim_{n \to \propto} \sqrt{x_{n}}=\sqrt{a} \)

Ответ: NaN

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}=\left ( \frac{n-1}{n} \right )^{5} \)

Решение №7428: \( \lim_{n \to \propto}\frac{\left ( -1 \right )^{n}6^{n}-5^{n+1}}{5^{n}-\left ( -1 \right )^{n+1}6^{n+1}}=\lim_{n \to \propto}\frac{1-5\left ( -1 \right )^{n}\left ( \frac{5}{6} \right )^{n}}{\left ( -1 \right )^{n}\left ( \frac{5}{6} \right )^{n}+6}=\frac{1}{6} \)

Ответ: \frac{1}{6}

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}= \frac{\sqrt{n^{2}+1}-n}{\sqrt{n+1}- \sqrt{n}}\)

Решение №7431: Умножив числитель и знаменатель дроби на сопряженные выражения, получим \(\lim_{n \to \propto} x_{n}=\lim_{n \to \propto}\frac{\sqrt{n^{2}+1}-n}{\sqrt{n+1}-\sqrt{n}}=\lim_{n \to \propto}\frac{\left ( n^{2}+1-n^{2} \right )\left ( \sqrt{n+1}+\sqrt{n} \right )}{\left ( \sqrt{n^{2}+1}+n \right )\left ( n+1-n \right )}\lim_{n \to \propto}\frac{n\left ( \sqrt{\frac{1}{n}+\frac{1}{n^{2}}}+\sqrt{\frac{1}{n}} \right )}{n\left ( \sqrt{1+\frac{1}{n^{2}}}+1 \right )}=0\)

Ответ: 0