№7428
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}=\left ( \frac{n-1}{n} \right )^{5} \)
Ответ
\frac{1}{6}
Решение № 7428:
\( \lim_{n \to \propto}\frac{\left ( -1 \right )^{n}6^{n}-5^{n+1}}{5^{n}-\left ( -1 \right )^{n+1}6^{n+1}}=\lim_{n \to \propto}\frac{1-5\left ( -1 \right )^{n}\left ( \frac{5}{6} \right )^{n}}{\left ( -1 \right )^{n}\left ( \frac{5}{6} \right )^{n}+6}=\frac{1}{6} \)