№7418
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Пусть \(\lim_{n \to \propto} x_{n}=a> 0\).Докажите, что \(\lim_{n \to \propto} \sqrt{x_{n}}=\sqrt{a}\) (требуется доказать наличие предела и вычислить его).
Ответ
NaN
Решение № 7418:
Пусть \(\sqrt{x_{n}}=\sqrt{a}+\alpha _{n}\). Заметим, что \(\alpha =\sqrt{x_{n}}-\sqrt{a}=\frac{x_{n}-a}{\sqrt{x_{n}}+\sqrt{a}}\), и получим \)\left | \alpha_{n} \right |< \frac{\left | x_{n} -a\right |}{\sqrt{a}}\). Пусть дано произвольное число \(\varepsilon > 0\). Так как последовательность \(\left \{ x_{n}-a \right \}\) бесконечно малая, то, начиная с некоторого номера n=k, будет выполняться неравенство \(\left | x_{n}-a \right |< \varepsilon \sqrt{a}\). Следовательно, при \(n\geqslant k\) будет выполняться неравенство \(\left | \alpha _{n} \right |< \varepsilon\) , а значит \lim_{ n \to \propto} \alpha _{n}=0. Тогда \lim_{n \to \propto} \sqrt{x_{n}}=\sqrt{a} \)