Задача №7431

№7431

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}= \frac{\sqrt{n^{2}+1}-n}{\sqrt{n+1}- \sqrt{n}}\)

Ответ

0

Решение № 7431:

Умножив числитель и знаменатель дроби на сопряженные выражения, получим \(\lim_{n \to \propto} x_{n}=\lim_{n \to \propto}\frac{\sqrt{n^{2}+1}-n}{\sqrt{n+1}-\sqrt{n}}=\lim_{n \to \propto}\frac{\left ( n^{2}+1-n^{2} \right )\left ( \sqrt{n+1}+\sqrt{n} \right )}{\left ( \sqrt{n^{2}+1}+n \right )\left ( n+1-n \right )}\lim_{n \to \propto}\frac{n\left ( \sqrt{\frac{1}{n}+\frac{1}{n^{2}}}+\sqrt{\frac{1}{n}} \right )}{n\left ( \sqrt{1+\frac{1}{n^{2}}}+1 \right )}=0\)

Поделиться в социальных сетях

Комментарии (0)