№7422
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Известно, что \(\forall n\in N x_{n}\neq 1\) и \(\lim_{n \to \propto} x_{n}=1\). Найдите \(\lim_{n \to \propto} y_{n}\), если: \(y_{n}=\frac{x_{n}^{2}+x_{n}-2}{x_{n}-2}\)
Ответ
NaN
Решение № 7422:
1; 0