Задача №13644

№13644

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5

Условие

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной: \(x_{n}=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2}} \)

Ответ

NaN

Решение № 13642:

Так как \(\forall n\in N 1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}} \geqslant \frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}=\frac{n}{\sqrt{n}}=\sqrt{n}\), а последовательность с общим членом \(y_{n}=\sqrt{n}\) не ограничена сверху, то последовательность \(\left \{ x_{n} \right \}\) не ограничена сверху. Понятно, что \(\forall n\in N x_{1}< x_{n}\) , а значит, последовательность \(\left \{ x_{n} \right \} \)ограничена снизу.

Поделиться в социальных сетях

Комментарии (0)