№13677
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найдите (угадайте), к какому числу сходится поледовательность, и докажите, что это число действительно предел последовательности по определению: \( x_{n}=sign\left ( n^{2}-5n-7 \right ) \)
Ответ
1
Решение № 13675:
1. При n> 6 выполнено неравенство \(n^{2}-5n-7> 0\), откуда при n> 6 будет выполняться \(x_{n}=1\)