№13672
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найдите (угадайте), к какому числу сходится поледовательность, и докажите, что это число действительно предел последовательности по определению: \(x_{n}=\left ( -\frac{2}{5} \right )^{n} \)
Ответ
NaN
Решение № 13670:
Докажем, что \( \lim_{n \to \propto} \left ( -\frac{2}{5} \right )^{n}=0\). Тогда должно выполняться \(\left | \left ( -\frac{2}{5} \right )^{n} \right |=\left | \left ( -1 \right )^{n}\left ( \frac{2}{5} \right )^{n} \right |=\left ( \frac{2}{5} \right )^{n}< \varepsilon\). Взяв \(N_{\varepsilon }=\left [ \log _{\frac{5}{2}}\frac{1}{3} \right ]+1\), получим, что неравенство \(\left ( \frac{2}{5} \right )^{n}< \varepsilon\) выполнено для всех \(n> N_{\varepsilon }. \)