Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Решить уравнения: \( \frac{\log _{2}\left ( 9-2^{x} \right )}{3-x}=1 \)

Решение №15092: ОДЗ: \( \left\{\begin{matrix} 9-2^{x}> 0, & & \\ 3-x\neq 0, & & \end{matrix}\right. \Leftrightarrow 3\neq x< \log _{2}9 \) Из условия \( \log _{2}\left ( 9-2^{x} \right )=3-x \Leftrightarrow 9-2^{x}=2^{3-x} \Leftrightarrow 2^{2x}-9*2^{x}+8=0 \) Решая его как квадратное относительно \( 2^{x} \), найдем \( \left ( 2^{x} \right )_{1}=1 \), откуда \( x_{1}=0 \), или \( \left ( 2^{x} \right )_{2}=8 \), откуда \( x_{2}=3; x_{2}=3 \) не подходит по ОДЗ.

Ответ: 0

Решить уравнения: \( 9^{x}+6^{x}=2^{2x+1} \)

Решение №15200: Перепишем уравнение в виде \( 3^{2x}+2^{x}*3^{x}-2*2^{2x}=0 \), и разделим его на \( 2^{2x}\neq 0 \) Тогда \( \left ( \frac{3}{2} \right )^{2x}+\left ( \frac{3}{2} \right )^{x}-2=0 \Rightarrow \left ( \left ( \frac{3}{2} \right )^{x} \right )_{1}=-2 \), (нет решений) или \( \left ( \left ( \frac{3}{2} \right )^{x} \right )_{2}=1 \Rightarrow x=0 \)

Ответ: 0

Решить уравнения: \( 27*2^{-3x}+9*2^{x}-2^{3x}-27*2^{-x}=8 \)

Решение №15707: Преобразуем уравнение: \( 27+9*2^{4x}-2^{6x}-27*2^{2x}=8*2^{3x} \Leftrightarrow 2^{6x}-9*2^{4x}+8*2^{3x}+27*2^{2x}-27=0 \Leftrightarrow 2^{6x}-2^{4x}-8*2^{4x}+8*2^{3x}+27*2^{x}-27=0 \Leftrightarrow 2^{4x}\left ( 2^{2x}-1 \right )-8*2^{3x}\left ( 2^{x}-1 \right )+27\left ( 2^{x}-1 \right )=0 \Leftrightarrow 2^{4x}\left ( 2^{x}-1 \right \)left ( 2^{x}+1 \right )-8*2^{3x}\left ( 2^{x}-1 \right )+27\left ( 2^{x}-1 \right )=0 \Leftrightarrow \left ( 2^{x}-1 \right \)left ( 2^{5x}+2^{4x}-8*2^{3x}+27 \right )=0 \), откуда \( 2^{x}=1, x_{1}=0 \) Уравнение \( 2^{5x}+2^{4x}-8*2^{3x}+27=0 \) решений не имеет.

Ответ: 0

Решить уравнения: \( \left ( 16*5^{2x-1}-2*5^{x-1}-0.048 \right \)lg \left ( x^{3}+2x+1 \right )=0 \)

Решение №15708: Для решения задачи о том, что биссектриса угла \((bc)\) является биссектрисой угла \((ad)\), выполним следующие шаги:

  1. Рассмотрим угол \((ad)\), который делится лучами \(b\) и \(c\) на три равных угла. Пусть угол \((ad)\) равен \(3\alpha\). Тогда каждый из трёх равных углов будет равен \(\alpha\).
  2. Обозначим угол между лучами \(a\) и \(b\) как \(\alpha\), угол между лучами \(b\) и \(c\) как \(\alpha\), и угол между лучами \(c\) и \(d\) как \(\alpha\).
  3. Таким образом, угол \((bc)\) также равен \(\alpha\).
  4. Рассмотрим биссектрису угла \((bc)\). Биссектриса угла \((bc)\) делит угол \((bc)\) пополам, то есть на два равных угла, каждый из которых равен \(\frac{\alpha}{2}\).
  5. Теперь рассмотрим угол \((ad)\). Поскольку угол \((ad)\) делится на три равных угла, каждый из которых равен \(\alpha\), то биссектриса угла \((ad)\) делит его на два равных угла, каждый из которых равен \(\frac{3\alpha}{2}\).
  6. Так как биссектриса угла \((bc)\) делит угол \((bc)\) пополам, и угол \((bc)\) равен \(\alpha\), то биссектриса угла \((bc)\) делит угол \((ad)\) на два равных угла, каждый из которых равен \(\frac{3\alpha}{2}\).
  7. Следовательно, биссектриса угла \((bc)\) является биссектрисой угла \((ad)\).
Таким образом, мы доказали, что биссектриса угла \((bc)\) является биссектрисой угла \((ad)\).

Ответ: 0

Решить уравнения: \( 4^{\lg x+1}-6^{\lg x}-2*3^{\lg x^{2}+2}=0 \)

Решение №15709: ОДЗ: \( x> 0 \) Из условия имеем \( 4*2^{2\lg x}-2^{\lg x}*3^{\lg x}-18*3^{2\lg x}=0 \) Разделив его на \( 3^{2\lg x} \), получим \( 4*\left ( \frac{2}{3} \right )^{2\lg x}-\left ( \frac{2}{3} \right )^{\lg x}-18=0 \Rightarrow \left ( \frac{2}{3} \right )^{\lg x}=-2 \) (нет решений), или \( \left ( \frac{2}{3} \right )^{\lg x}=\left ( \frac{2}{3} \right )^{-2} \Rightarrow \lg x=-2 \) Тогда \( x=10^{-2}=0.01 \)

Ответ: 0.01

Решить уравнения: \( \frac{2-\lg 4+\lg 0.12}{\lg \left ( \sqrt{3x+1}+4 \right )-\lg 2x}=1 \)

Решение №15710: ОДЗ: \( \left\{\begin{matrix} x> 0& & & \\ 3x+1\geq 0, x> 0 & & & \\ lg\left ( \sqrt{3x+1}+4 \right \)neq lg2x & & & \end{matrix} \right \) Из условия \( \lg 100-\lg 4+\lg 0.12=\lg \left ( \sqrt{3x+1}+4 \right )-\lg 2x\Rightarrow \lg \frac{100*0.12}{4}=\lg \frac{\sqrt{3x+1}+4}{2x}, 3=\frac{\sqrt{3x+1}+4}{2x}\Rightarrow \sqrt{3x+1}=6x-4, 6x-4\geq 0\Rightarrow \left\{\begin{matrix} 3x+1=36x^{2}-48x+16 & & \\ 6x -4 \geq 0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 12x^{2}17x+5=0 & & \\ x \geq \frac{2}{3} & & \end{matrix}\right \) Корнями уравнения будут \( x_{1}= \frac{5}{ 12}, x_{2}=1; x_{1}= \frac{5}{12} \) не подходит.

Ответ: 1

Решить уравнения: \( \log _{3}\left ( 81^{x}+3^{2x} \right )=3\log _{27}90 \)

Решение №15711: Из условия \( \log _{3}\left ( 81^{x}+3^{2x} \right )=\log _{3}90, 9^{2x}+9^{x}-90=0 \), откуда найдем \( 9^{x}=-10 \), что не подходит, или \( 9^{x}=9 \), откуда имеем \( x=1 \) .

Ответ: 1

Решить уравнения: \( x\left ( \lg 5-1 \right )=\lg \left ( 2^{x} +1 \right ) -\lg 6 \)

Решение №15712: \( x\left ( lg5-lg10 \right )=\lg \left ( 2^{x}+1 \right )-\lg 6, x\lg \frac{5}{10}=\lg \frac{2^{x}+1}{6}, \lg 2^{-x}=\lg \frac{2^{x}+1}{6} , 2^{-x} = \frac{2^{x} +1}{ 6} , 2^{ 2x} +2^{ x} -6 =0 \) Решив это уравнение как квадратное относительно \( 2^{x} \), найдем \( 2^{x}=-3 \) (не подходит), \( 2^{x}=2 \), откуда имеем \( x = 1 \)

Ответ: 1

Решить уравнения: \( \log _{2}\left ( 4*3^{x}-6 \right )-\log _{2}\left ( 9^{x}-6 \right )=1 \)

Решение №15713: ОДЗ: \( \left\{\begin{matrix} 4*3^{x}-6> 0 & & \\ 9^{x}-6> 0 & & \end{matrix}\right. \) Имеем \( \log _{2}\frac{4*3^{x}-6}{3^{2x}-6}=1, \frac{4*3^{x}-6}{3^{2x}-6}=2\Rightarrow 3^{2x}-2*3^{x}-3=0 \) Решая его как квадратное относительно \( 3^{x} \), найдем \( 3^{x}=-1,\varnothing \); или \( 3^{x}=3 \), откуда \( x=1 \)

Ответ: 1

Решить уравнения: \( 5^{2x-1}+2^{2x}-5^{2x}+2^{2x+2}=0 \)

Решение №15714: Запишем уравнение в виде \( \frac{5^{2x}}{5}-5^{2x}=-2^{2x}-4*2^{2x}, -\frac{4}{5}*5^{2x}=-5*2^{2x}, \left ( \frac{5}{2} \right )^{2x}=\left ( \frac{5}{2} \right )^{2}, x=1 \)

Ответ: 1

Решить уравнения: \( 5^{1+x^{3}}-5^{1-x^{3}}=24 \)

Решение №15715: Имеем \( 5*5^{x^{3}}-5\frac{5}{5^{x^{3}}}-24=0 \Leftrightarrow 5*\left ( 5^{x^{3}} \right )^{2}-24*5^{x^{3}}-5=0 \) Решая это уравнение как квадратное относительно \( 5^{x^{3}} \), получим \( 5^{x^{3}}=-\frac{1}{5} \) (нет решений) \( 5^{x^{3}}=5 \Rightarrow x^{3}=1, x=1 \)

Ответ: 1

Решить уравнения: \( \log _{x+1}\left ( x-0.5 \right )=\log _{x-0.5}\left ( x+1 \right ) \)

Решение №15716: ОДЗ: \( \left\{\begin{matrix} 0< x+1\neq 1, & & \\ 0< x-0.5\neq 1 & & \end{matrix}\right. 0.5< x\neq 1.5 \) Умножив обе части уравнения на \( \log _{x+1}\left ( x-0.5 \right \)neq 0 \), получим \( \log _{x+1}^{2}\left ( x-0.5 \right )=1 \Rightarrow \log _{x+1}\left ( x-0.5 \right )=-1 \Rightarrow x-0.5=\frac{1}{x+1}, 2x^{2}+x-3=0, x_{1}=-\frac{3}{2} \) (не подходит по ОДЗ), \( x_{2}=1 \); или \( \log _{x+1}\left ( x-0.5 \right )=1, x-0.5=x+1\), нет решений.

Ответ: 1

Решить уравнения: \( x\log _{x+1}5*\log _{\sqrt[3]{1/5}}\left ( x+1 \right )=\frac{x-4}{x}\)

Решение №15717: ОДЗ: \( \left\{\begin{matrix} 0< x+1\neq 1, & & \\ x\neq 0 & & \end{matrix}\right. \Leftrightarrow -1< x\neq 0 \) Перейдем к основанию 5. Имеем \( \frac{5}{\log_{5}\left ( x+1 \right )}*\left ( -3 \right \)log_{5}\left ( x+1 \right )=\frac{x-4}{x}, -3x=\frac{x-4}{x} \), при \( \log_{5}\left ( x+1 \right \)neq 0 \) Отсюда \( 3x^{2}+x-4=0, x_{1}=-\frac{4}{3}, x_{2}=1; x_{1}=-\frac{4}{3} \) не подходит по ОДЗ.

Ответ: 1

Решить уравнения: \( \frac{\log _{2}\left ( x^{3}+3x^{2}+2x-1 \right )}{\log _{2}\left ( x^{3}+2x^{2}-3x+5 \right )}=\log _{2x}x+\log _{2x}2 \)

Решение №15718: ОДЗ: \( \left\{\begin{matrix} x^{3}+3x^{2}+2x-1> 0, & & & \\ 0< x^{3}+2x^{2}-3x+5\neq 1 & & & \\ 0< x\neq \frac{1}{2} & & & \end{matrix}\right. \) По формуле замены основания имеем \( \log _{x^{3}+2x^{2}-3x+5}\left ( x^{3}+3x^{2}+2x-1 \right )=\log _{2x}2x \Leftrightarrow \log _{x^{3}+2x^{2}-3x+5}\left ( x^{3}+3x^{2}+2x-1 \right )=1 \Leftrightarrow x^{3}+3x^{2}+2x-1=x^{3}+2x^{2}-3x+5 \Leftrightarrow x^{2}+5x-6=0 \Rightarrow x_{1}=1, x_{2}=-6; x_{2}=-6 \) не подходит по ОДЗ.

Ответ: 1

Решить уравнения: \( 3\log _{5}2+2-x=\log _{5}\left ( 3^{x}-5^{2-x} \right ) \)

Решение №15719: ОДЗ: \( 3^{x}-5^{2-x}> 0. \log _{5}8+2\log _{5}5-\log _{5}\left ( 3^{x}-25*5^{-x} \right )=x\Leftrightarrow \log _{5}\frac{8*25}{3^{x}-25*5^{-x}} = x \) , откуда \( \frac{200}{3^{x}-25*5^{-x}}=5^{x} \Leftrightarrow 15^{ x} = 15^{ 2} \) Таким образом, \( x= 2 \)

Ответ: 2

Решить уравнения: \( \log _{3}\left ( 3^{x}-8 \right )=2 -x \)

Решение №15720: ОДЗ: \( 3^{ x } - 8 > 0 \) По определению логарифма имеем \( 3^{x}-8=3^{2-x}, 3^{x}-8=\frac{9}{3^{x}}, 3^{2x}-8*3^{x}-9=0 \), откуда, решая это уравнение как квадратное относительно \( 3^{x} \), найдем \( 3^{x}=-1 , \O \); или \( 3^{x}= 9 \), откуда \( x = 2 \)

Ответ: 2

Решить уравнения: \( \log _{\sqrt{5}}\left ( 4^{x}-6 \right )-\log _{\sqrt{5}}\left ( 2^{x}-2 \right )=2 \)

Решение №15721: ОДЗ: \( \left\{\begin{matrix} 4^{x}-6> 0 & & \\ 2^{x}-2 > 0 & & \end{matrix}\right. \) Имеем \( \log _{\sqrt{5}}\frac{4^{x}-6}{2^{x}-2}=2 , \frac{2^{2x}-6}{2^{2}-2}= 5 , 2^{2x}-5*2^{x}+4=0 \) Решая это уравнение как квадратное относительно \( 2^{x} \), найдем \( \left (2^{x} \right )_{ 1}=1 \), откуда имеем \( x_{1}= 0 \), или \( \left ( 2^{x} \right )_{2}=4 \), откуда имеем \( x_{2}=2; x_{1}=0 \) не подходит по ОДЗ.

Ответ: 2

Решить уравнения: \( 4^{2\log _{8}\left ( 2x-2 \right )}*0.25^{\log _{8}\left (2x-3 \right )}=\sqrt[3]{16} \)

Решение №15722: ОДЗ: \( \left\{\begin{matrix} 2x-2> 0 & & \\ 2x-3> 0 & & \end{matrix}\right. x> \frac{3}{2} \) Имеем \( 4^{2\log _{8}\left ( 2x-2 \right )}*4^{-\log _{8}\left (2x-3 \right )}=4^{\frac{2}{3}}, 4^{2\log _{8}\left ( 2x-2 \right )-\log _{8}\left (2x-3 \right )}=4^{\frac{2}{3}}, 2\log _{8}\left ( 2x-2 \right )-\log _{8}\left (2x-3 \right )=\frac{2}{3}, \log _{8}\frac{\left ( 2x-2 \right )^{2}}{\left (2x-3 \right )}=4, x^{2}-4x+4=0, \left ( x-2 \right )^{2}=0 \), откуда \( x=2 \)

Ответ: 2

Решить уравнения: \( \log _{2}\left ( 4x+4 \right )=x+\log _{2}\left ( 2^{x+1}-3 \right ) \)

Решение №15723: ОДЗ: \( 2^{x+1}-3> 0 \) Перепишем уравнение в виде \( \log _{2}\left ( 2^{2x}+4 \right )-\log _{2}\left ( 2*2^{x}-3 \right )=x, \log _{2}\frac{2^{2x}+4}{2*2^{x}-3}=x, \frac{2^{2x}+4}{2*2^{x}-3}=2^{x}, 2^{2x}-3*2^{x}-4=0 \) Решая это уравнение как квадратное относительно \( 2^{x} \), получаем \( 2^{x}=-1, \varnothing \); или \( 2^{x}=4 \), откуда \( x=2 \)

Ответ: 2

Решить уравнения: \( \log _{a^{2}}x^{2}+\log _{a}\left (x-1 \right )=\log _{a}\log _{\sqrt{5}}5 \)

Решение №15724: ОДЗ: \( \left\{\begin{matrix} x> 1, & & \\ 0< a\neq 1 & & \end{matrix}\right. \) Из условия имеем \( \log _{a}x+\log _{a}\left ( x-1 \right )=\log _{a}2 \Rightarrow \log _{a}x\left ( x-1 \right )=\log _{a}2 \), откуда \( x^{2}-x-2=0 \Rightarrow x_{1}=2, x_{2}=-1; x_{2}=-1 \) не подходит по ОДЗ.

Ответ: 2

Решить уравнения: \( x^{2}*\log _{x}27*\log _{9}x=x+4 \)

Решение №15725: ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 3, тогда \( \frac{3x^{2}}{\log _{3}x}*\frac{\log _{3}x}{2}=x+4 \Leftrightarrow 3x^{2}-2x-8=0 \), откуда \( x_{1}=2, x_{2}=-\frac{4}{3}; x_{2}=-\frac{4}{3} \) не подходит по ОДЗ.

Ответ: 2

Решить уравнения: \( \left ( \frac{3}{5} \right )^{2\log_{9}\left ( x+1 \right )}*\left ( \frac{125}{27} \right )^{\log_{1/27}\left ( x-1 \right )}=\frac{\log_{5}27}{\log_{5}243} \)

Решение №15726: ОДЗ: \( x> 1 \) Из условия имеем \( \left ( \frac{3}{5} \right )^{\log_{3}x+1}*\left ( \frac{3}{5} \right )^{\log_{3}x-1}=\frac{3}{5}\Leftrightarrow \left ( \frac{3}{5} \right )^{\log_{3}\left ( x+1 \right )+\log_{3}\left ( x-1 \right )}=\frac{3}{5} \Rightarrow \log_{3}\left ( x+1 \right )+\log_{3}\left ( x-1 \right )=1 \Rightarrow \log_{3}\left ( x^{2}-1 \right )=1, x^{2}-1=3, x^{2}=4 \) Отсюда \( x_{1}=-2, x_{2}=2; x_{1}=-2 \) не подходит по ОДЗ.

Ответ: 2

Решить уравнения: \( \log_{3x+7}\left ( 5x+3 \right )+\log_{5x+3}\left ( 3x+7 \right )=2 \)

Решение №15727: ОДЗ: \( \left\{\begin{matrix} 0< 5x+3\neq 1, & & \\ 0< 3x+7\neq 1 & & \end{matrix}\right. \Leftrightarrow x> -\frac{3}{5}, x\neq -\frac{2}{5} \) Умножив уравнение на \( \log_{3x+7}\left ( 5x+3 \right \)neq 0 \), получим \( \log_{3x+7}^{2}\left ( 5x+3 \right )-2\log_{3x+7}\left ( 5x+3 \right )+1=0 \Leftrightarrow \left ( \log_{3x+7}\left ( 5x+3 \right )-1 \right )^{2}=0 \Leftrightarrow \log_{3x+7}\left ( 5x+3 \right )=1 \Leftrightarrow 5x+3=3x+7, x=2 \)

Ответ: 2

Решить уравнения: \( \log _{2}\sqrt[3]{x}+\sqrt[3]{\log _{2}x}=\frac{4}{3} \)

Решение №15728: ОДЗ: \( x> 0 \) Из условия имеем \( \frac{1}{3}\log _{2}x+\sqrt[3]{\log _{2}x}=\frac{4}{3}\Leftrightarrow \log _{2}x+3\sqrt[3]{\log _{2}x}-4=0 \) Пусть \( \sqrt[3]{\log _{2}x}=y \) Относительно \( y \) уравнение принимает вид \( y^{3}-3y-4=0 \Leftrightarrow \left ( y^{3}-1 \right )+\left ( 3y-3 \right )=0 \Leftrightarrow \left ( y-1 \right \)left ( y^{2}+y+1 \right )+3\left ( y-1 \right )=0 \Leftrightarrow \left ( y-1 \right \)left ( y^{2}+y+4 \right )=0 \), откуда \( y-1=0 \), так как \( y^{2}+y+4> 0 \) Тогда \( y=1, \sqrt[3]{\log _{2}x}=1, \log _{2}x=1, x=2\)

Ответ: 2

Решить уравнения: \( \log _{5}\left ( x-2 \right )+\log _{\sqrt{5}}\left ( x^{3}-2 \right )+\log _{0.2}\left ( x-2 \right )=4 \)

Решение №15729: ОДЗ: \( x-2> 0, x > 2 \) Из условия имеем \( \log _{5}\left ( x-2 \right )+2\log _{5}\left ( x^{3}-2 \right )-\log _{5}\left ( x-2 \right )=4, \log _{5}\left ( x^{3}-2 \right ) =2 \) , откуда \( x^{3}-2=25, x^{3}=27 \) Тогда \( x=3 \)

Ответ: 3

Решить уравнения: \( \lg \left ( 3^{x}-2^{4-x} \right )=2+0.25\lg 16-0.5x\lg 4 \)

Решение №15730: ОДЗ: \( 3^{x}-2^{4-x}> 0 \) . Из условия \( \lg \left ( 3^{x}-2^{4-x} \right )=\lg 100+\lg 2-\lg 2^{x}\Rightarrow \lg \left ( 3^{x}-2^{4-x} \right )=\lg \frac{100*2}{2^{x}}, 3^{x}-2^{4-x}=\frac{200}{2^{ x}} \) . Отсюда \( 6^{x}=216 \), откуда \( x=3 \) .

Ответ: 3

Найти натуральное число \( n \) из равенства \( 3^{2} *3^{5} *3^{8}... 3^{ 3n -1}= 27^{5} \)

Решение №15731: \( 3^{2+5+8+...+3n-1}=3^{15} , 2+5+8+...3n-1=15 \) В левой части уравнения имеем сумму членов арифметической прогресии \( S_{k} \), где \( a_{1}=2 , d=3 , a_{k}=3n-1 , k=\frac{a_{k}-a_{1}}{d}+1=\frac{3n-1-2}{3}+1 = n \) Тогда \( S_{k}=\frac{a_{1}+a_{k}}{2}*k=\frac{2+3n-1}{2} *n= \frac{ 3n^{ 2} +n}{ 2} \), и уравнение принимает вид \( \frac{ 3n^{ 2} +n}{ 2}=15, 3n^{2}+n-30=0 \) , откуда \( n = 3 \)

Ответ: 3

Решить уравнения: \( 4^{x}-10*2^{x-1}-24= 0 \)

Решение №15732: Из условия \( 2^{2x}-5*2^{x}-24= 0 \) Решая это уравнение как квадратное относительно \( 2^{x} \), получим \( 2^{x}=-3, \varnothing \); или \( 2^{x}=8 \), откуда \( x=3 \)

Ответ: 3

Решить уравнения: \( \frac{2x+10}{4}=\frac{9}{2^{x-2}} \)

Решение №15733: Из условия \( \frac{2x+10}{4}=\frac{9}{2^{x}*2^{-2}}, \frac{2x+10}{4}=\frac{36}{2^{x}}, 2^{2x}+10*2^{x}-144=0 \) Решая это уравнение как квадратное относительно \( 2^{x} \), найдем \( 2^{x}=-18, \varnothing \), или \( 2^{x}=8 \), откуда \( x=3 \)

Ответ: 3

Решить уравнения: \( \log _{12}\left ( 4^{3x}+3x-9 \right )=3x-3\log _{12}27 \)

Решение №15734: ОДЗ: \( 4^{3x}+3x-9> 0 \) Перепишем уравнение в виде \( \log _{12}\left ( 4^{3x}+3x-9 \right )+\log _{12}27^{x}=3x \Rightarrow \log _{12}27^{x}\left ( 4^{3x}+3x-9 \right )=3x \), откуда \( 27^{x}\left ( 4^{3x}+3x-9 \right )=12^{3x} \Leftrightarrow 4^{3x}+3x-9=4^{3x}, 3x-9=0, x=3 \)

Ответ: 3