№15728
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \left ( \frac{3}{5} \right )^{2\log_{9}\left ( x+1 \right )}*\left ( \frac{125}{27} \right )^{\log_{1/27}\left ( x-1 \right )}=\frac{\log_{5}27}{\log_{5}243} \)
Ответ
2
Решение № 15726:
ОДЗ: \( x> 1 \) Из условия имеем \( \left ( \frac{3}{5} \right )^{\log_{3}x+1}*\left ( \frac{3}{5} \right )^{\log_{3}x-1}=\frac{3}{5}\Leftrightarrow \left ( \frac{3}{5} \right )^{\log_{3}\left ( x+1 \right )+\log_{3}\left ( x-1 \right )}=\frac{3}{5} \Rightarrow \log_{3}\left ( x+1 \right )+\log_{3}\left ( x-1 \right )=1 \Rightarrow \log_{3}\left ( x^{2}-1 \right )=1, x^{2}-1=3, x^{2}=4 \) Отсюда \( x_{1}=-2, x_{2}=2; x_{1}=-2 \) не подходит по ОДЗ.