№15724
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 4^{2\log _{8}\left ( 2x-2 \right )}*0.25^{\log _{8}\left (2x-3 \right )}=\sqrt[3]{16} \)
Ответ
2
Решение № 15722:
ОДЗ: \( \left\{\begin{matrix} 2x-2> 0 & & \\ 2x-3> 0 & & \end{matrix}\right. x> \frac{3}{2} \) Имеем \( 4^{2\log _{8}\left ( 2x-2 \right )}*4^{-\log _{8}\left (2x-3 \right )}=4^{\frac{2}{3}}, 4^{2\log _{8}\left ( 2x-2 \right )-\log _{8}\left (2x-3 \right )}=4^{\frac{2}{3}}, 2\log _{8}\left ( 2x-2 \right )-\log _{8}\left (2x-3 \right )=\frac{2}{3}, \log _{8}\frac{\left ( 2x-2 \right )^{2}}{\left (2x-3 \right )}=4, x^{2}-4x+4=0, \left ( x-2 \right )^{2}=0 \), откуда \( x=2 \)